The multiscale approach to error estimation and adaptivity

Abstract A new explicit a-posteriori error estimator is investigated, which emanates from the variational multiscale theory. The error estimator uses an approximation of the Green’s function which propagates the error according to the dual problem. The technique predicts the error in the L2 norm from element residuals, both interior and inter-element jumps, therefore, leading to a very economical procedure. Finally, the methodology is applied to fluid flow transport, showing that for convection-dominated flows, the efficiency index is independent of the diffusion coefficient.

[1]  Rüdiger Verfürth,et al.  A posteriori error estimators for stationary convection–diffusion problems: a computational comparison , 2000 .

[2]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[3]  Thomas J. R. Hughes,et al.  An a posteriori error estimator and hp -adaptive strategy for finite element discretizations of the Helmholtz equation in exterior domains , 1997 .

[4]  O. C. Zienkiewicz,et al.  Error estimation and adaptivity in Navier-Stokes incompressible flows , 1990 .

[5]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[6]  Pedro Díez,et al.  A posteriori error estimation for standard finite element analysis , 1998 .

[7]  Huaiqin Wu,et al.  Global Exponential Stability of a Class of Neural Networks with Finite Distributed Delays , 2007 .

[8]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[9]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[10]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[11]  Pedro Díez,et al.  Error estimation including pollution assessment for nonlinear finite element analysis , 2000 .

[12]  J. T. Oden,et al.  A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .

[13]  Leszek Demkowicz,et al.  A posteriori error analysis in finite elements: the element residual method for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations , 1990 .

[14]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[15]  A POSTERIORI ERROR ESTIMATORS VIA BUBBLE FUNCTIONS , 1996 .

[16]  Antonio García-Olivares,et al.  Variational subgrid scale formulations for the advection-diffusion-reaction equation , 2001 .

[17]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[18]  Ivo Babuška,et al.  Analysis of optimal finite-element meshes in ¹ , 1979 .

[19]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[20]  Franco Brezzi,et al.  Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .

[21]  Alessandro Russo,et al.  A posteriori error estimators for the Stokes problem , 1995 .

[22]  Kenneth Eriksson,et al.  An adaptive finite element method for linear elliptic problems , 1988 .

[23]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[24]  I. Babuska,et al.  Analysis of Optimal Finite Element Meshes in R1 , 1979 .

[25]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[26]  Serge Prudhomme,et al.  A posteriori error estimation of steady-state finite element solutions of the Navier—Stokes equations by a subdomain residual method , 1998 .

[27]  Guillermo Hauke,et al.  A simple subgrid scale stabilized method for the advection–diffusion-reaction equation , 2002 .

[28]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[29]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[30]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[31]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[32]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[33]  J. Oden,et al.  An a posteriori error estimate for finite element approximations of the Navier-Stokes equations , 1994 .

[34]  I. Babuska,et al.  Adaptive approaches and reliability estimations in finite element analysis , 1979 .

[35]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[36]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[37]  Eugenio Oñate,et al.  Error estimation and mesh adaptivity in incompressible viscous flows using a residual power approach , 2006 .

[38]  Volker John,et al.  A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .

[39]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[40]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[41]  G. Bugeda,et al.  Adaptive mesh refinement techniques for aerodynamic problems. , 1992 .

[42]  M. Ainsworth,et al.  A posteriori error estimators in the finite element method , 1991 .

[43]  O. C. Zienkiewicz,et al.  A simple error estimator in the finite element method , 1987 .

[44]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[45]  T. Hughes,et al.  A tutorial in elementary finite element error analysis: A systematic presentation of a priori and a posteriori error estimates , 1998 .

[46]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[47]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[48]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[49]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .