The multiscale approach to error estimation and adaptivity
暂无分享,去创建一个
[1] Rüdiger Verfürth,et al. A posteriori error estimators for stationary convection–diffusion problems: a computational comparison , 2000 .
[2] Claes Johnson,et al. Adaptive finite element methods for diffusion and convection problems , 1990 .
[3] Thomas J. R. Hughes,et al. An a posteriori error estimator and hp -adaptive strategy for finite element discretizations of the Helmholtz equation in exterior domains , 1997 .
[4] O. C. Zienkiewicz,et al. Error estimation and adaptivity in Navier-Stokes incompressible flows , 1990 .
[5] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[6] Pedro Díez,et al. A posteriori error estimation for standard finite element analysis , 1998 .
[7] Huaiqin Wu,et al. Global Exponential Stability of a Class of Neural Networks with Finite Distributed Delays , 2007 .
[8] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[9] J. Peraire,et al. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .
[10] T. Hughes,et al. Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .
[11] Pedro Díez,et al. Error estimation including pollution assessment for nonlinear finite element analysis , 2000 .
[12] J. T. Oden,et al. A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .
[13] Leszek Demkowicz,et al. A posteriori error analysis in finite elements: the element residual method for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations , 1990 .
[14] Franco Brezzi,et al. $b=\int g$ , 1997 .
[15] A POSTERIORI ERROR ESTIMATORS VIA BUBBLE FUNCTIONS , 1996 .
[16] Antonio García-Olivares,et al. Variational subgrid scale formulations for the advection-diffusion-reaction equation , 2001 .
[17] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[18] Ivo Babuška,et al. Analysis of optimal finite-element meshes in ¹ , 1979 .
[19] O. C. Zienkiewicz,et al. Adaptivity and mesh generation , 1991 .
[20] Franco Brezzi,et al. Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .
[21] Alessandro Russo,et al. A posteriori error estimators for the Stokes problem , 1995 .
[22] Kenneth Eriksson,et al. An adaptive finite element method for linear elliptic problems , 1988 .
[23] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[24] I. Babuska,et al. Analysis of Optimal Finite Element Meshes in R1 , 1979 .
[25] L. Franca,et al. Stabilized Finite Element Methods , 1993 .
[26] Serge Prudhomme,et al. A posteriori error estimation of steady-state finite element solutions of the Navier—Stokes equations by a subdomain residual method , 1998 .
[27] Guillermo Hauke,et al. A simple subgrid scale stabilized method for the advection–diffusion-reaction equation , 2002 .
[28] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[29] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[30] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[31] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[32] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[33] J. Oden,et al. An a posteriori error estimate for finite element approximations of the Navier-Stokes equations , 1994 .
[34] I. Babuska,et al. Adaptive approaches and reliability estimations in finite element analysis , 1979 .
[35] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .
[36] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[37] Eugenio Oñate,et al. Error estimation and mesh adaptivity in incompressible viscous flows using a residual power approach , 2006 .
[38] Volker John,et al. A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .
[39] L. Franca,et al. On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .
[40] Claes Johnson,et al. Adaptive finite element methods in computational mechanics , 1992 .
[41] G. Bugeda,et al. Adaptive mesh refinement techniques for aerodynamic problems. , 1992 .
[42] M. Ainsworth,et al. A posteriori error estimators in the finite element method , 1991 .
[43] O. C. Zienkiewicz,et al. A simple error estimator in the finite element method , 1987 .
[44] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[45] T. Hughes,et al. A tutorial in elementary finite element error analysis: A systematic presentation of a priori and a posteriori error estimates , 1998 .
[46] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[47] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[48] J. Oden,et al. Finite Element Methods for Flow Problems , 2003 .
[49] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .