Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems

A rectilinear Steiner tree for a set T of points in the plane is a tree which connects T using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, input is a set T of n points in the Euclidean plane (R^2) and the goal is to find an rectilinear Steiner tree for T of smallest possible total length. A rectilinear Steiner arborecence for a set T of points and root r in T is a rectilinear Steiner tree S for T such that the path in S from r to any point t in T is a shortest path. In the Rectilinear Steiner Arborescense problem the input is a set T of n points in R^2, and a root r in T, the task is to find an rectilinear Steiner arborescence for T, rooted at r of smallest possible total length. In this paper, we give the first subexponential time algorithms for both problems. Our algorithms are deterministic and run in 2^{O(sqrt{n}log n)} time.

[1]  Erik Jan van Leeuwen,et al.  Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs , 2013, STACS.

[2]  Clark Thomborson,et al.  A Probaby Fast, Provably Optimal Algorithm for Rectilinear Steiner Trees , 1994, Random Struct. Algorithms.

[3]  Philip N. Klein,et al.  A subexponential parameterized algorithm for Subset TSP on planar graphs , 2014, SODA.

[4]  Ludwig Nastansky,et al.  Cost-minimal trees in directed acyclic graphs , 1974, Z. Oper. Research.

[5]  Joseph L. Ganley,et al.  Computing Optimal Rectilinear Steiner Trees: A Survey and Experimental Evaluation , 1999, Discret. Appl. Math..

[6]  Clark Thomborson,et al.  Computing a Rectilinear Steiner Minimal Tree in nO(sqrt(n)) Time , 1987, Parallel Algorithms and Architectures.

[7]  F. Hwang On Steiner Minimal Trees with Rectilinear Distance , 1976 .

[8]  M. Hanan,et al.  On Steiner’s Problem with Rectilinear Distance , 1966 .

[9]  Erik Jan van Leeuwen,et al.  Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[10]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[11]  F. Hwang,et al.  The Steiner Tree Problem , 2012 .

[12]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[13]  Hisao Tamaki,et al.  Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size , 2010, ISAAC.

[14]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Inclusion-Exclusion , 2012, Algorithmica.

[15]  Weiping Shi,et al.  The rectilinear Steiner arborescence problem is NP-complete , 2000, SODA '00.

[16]  Marcus Brazil,et al.  Optimal Interconnection Trees in the Plane: Theory, Algorithms and Applications , 2015 .

[17]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[18]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[19]  Hans Jürgen Prömel,et al.  The Steiner Tree Problem , 2002 .

[20]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[21]  Joseph L. Ganley,et al.  Improved Computation of Optimal Rectilinear Steiner Minimal Trees , 1997, Int. J. Comput. Geom. Appl..

[22]  Xinhui Wang,et al.  Dynamic Programming for Minimum Steiner Trees , 2007, Theory of Computing Systems.