Robust and efficient quantum optimal control of spin probes in a complex (biological) environment. Towards sensing of fast temperature fluctuations

We present an optimized scheme for nanoscale measurements of temperature in a complex environment using the nitrogen-vacancy center in nanodiamonds (NDs). To this end we combine a Ramsey measurement for temperature determination with advanced optimal control theory. We test our new design on single nitrogen-vacancy centers in bulk diamond and fixed NDs, achieving better readout signal than with common soft or hard microwave control pulses. We demonstrate temperature readout using rotating NDs in an agarose matrix. Our method opens the way to measure temperature fluctuations in complex biological environment. The used principle is universal and not restricted to temperature sensing.

[1]  Ronald L. Walsworth,et al.  High-resolution magnetic resonance spectroscopy using a solid-state spin sensor , 2017, Nature.

[2]  F. Dolde,et al.  Magnetic criticality-enhanced hybrid nanodiamond-thermometer under ambient conditions , 2017, 1707.02885.

[3]  J. Wrachtrup,et al.  Nanoscale nuclear magnetic resonance with chemical resolution , 2017, Science.

[4]  Tommaso Calarco,et al.  Autonomous calibration of single spin qubit operations , 2017, 1704.06514.

[5]  J. Wrachtrup,et al.  Optical imaging of localized chemical events using programmable diamond quantum nanosensors , 2017, Nature Communications.

[6]  C. P. Epperla,et al.  Measuring Nanoscale Thermostability of Cell Membranes with Single Gold-Diamond Nanohybrids. , 2017, Angewandte Chemie.

[7]  T. Schulte-Herbrüggen,et al.  Enhancing quantum sensing sensitivity by a quantum memory , 2016, Nature Communications.

[8]  D. D. B. Rao,et al.  Thin Circular Diamond Membrane with Embedded Nitrogen-Vacancy Centers for Hybrid Spin-Mechanical Quantum Systems , 2016, 1602.08320.

[9]  Huan-Cheng Chang,et al.  Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing. , 2016, Accounts of chemical research.

[10]  L. Hollenberg,et al.  Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging. , 2015, Nano letters.

[11]  E. Riedo,et al.  Imaging thermal conductivity with nanoscale resolution using a scanning spin probe , 2015, Nature Communications.

[12]  Huan-Cheng Chang,et al.  Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. , 2015, Nano letters.

[13]  Tommaso Calarco,et al.  Precise qubit control beyond the rotating wave approximation , 2014 .

[14]  H. Rigneault,et al.  A critique of methods for temperature imaging in single cells , 2014, Nature Methods.

[15]  M. Doherty,et al.  All-optical thermometry and thermal properties of the optically detected spin resonances of the NV(-) center in nanodiamond. , 2014, Nano letters.

[16]  S. Glaser,et al.  Concurrently optimized cooperative pulses in robust quantum control: application to broadband Ramsey-type pulse sequence elements , 2014, 1404.4943.

[17]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[18]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[19]  Hiromi Imamura,et al.  Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells , 2013, Nature Methods.

[20]  Tommaso Calarco,et al.  Precise ultra fast single qubit control using optimal control pulses , 2013, 1309.4399.

[21]  F. Reinhard,et al.  High-dynamic-range imaging of nanoscale magnetic fields using optimal control of a single qubit. , 2013, Physical review letters.

[22]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[23]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[24]  Viatcheslav V. Dobrovitski,et al.  Supporting Information for “ Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond ” , 2013 .

[25]  F. Dolde,et al.  High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond , 2013, Nature Communications.

[26]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[27]  Luís D Carlos,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[28]  D. Maclaurin,et al.  Nanoscale magnetometry through quantum control of nitrogen–vacancy centres in rotationally diffusing nanodiamonds , 2012, 1207.5276.

[29]  Takahito Ono,et al.  Pico calorimeter for detection of heat produced in an individual brown fat cell , 2012 .

[30]  Romain Quidant,et al.  Mapping intracellular temperature using green fluorescent protein. , 2012, Nano letters.

[31]  Y. Harada,et al.  Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy , 2012, Nature Communications.

[32]  Andreas Stemmer,et al.  Quantitative thermometry of nanoscale hot spots. , 2012, Nano letters.

[33]  J. Roch,et al.  Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity , 2011, 1108.0178.

[34]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[35]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[36]  D. Budker,et al.  Erratum: Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [Phys. Rev. Lett.104, 070801 (2010)] , 2011 .

[37]  L. Hollenberg,et al.  Sensing electric fields using single diamond spins , 2011, 1103.3432.

[38]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[39]  J. Twamley,et al.  Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. , 2010, Nature nanotechnology.

[40]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[41]  Kurt Aulenbacher,et al.  Fluorescence and spin properties of defects in single digit nanodiamonds. , 2009, ACS nano.

[42]  Y. Harada,et al.  Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. , 2009, Journal of the American Chemical Society.

[43]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[44]  D. Twitchen,et al.  Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond , 2008 .

[45]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[46]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.