Pure discrete spectrum dynamical system and periodic tiling associated with a substitution
暂无分享,去创建一个
[1] Marcy Barge,et al. Coincidence for substitutions of Pisot type , 2002 .
[2] P. Paufler,et al. Quasicrystals and Geometry , 1997 .
[3] G. Rauzy. Nombres algébriques et substitutions , 1982 .
[4] A. Siegel,et al. Automate des pr'efixes-suffixes associ'e ` a une substitution primitive , 1999 .
[5] V. Sirvent. Geodesic laminations as geometric realizations of Pisot substitutions , 2000, Ergodic Theory and Dynamical Systems.
[6] Brigitte Mossé,et al. Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..
[7] Enrico Bombieri,et al. Which distributions of matter diffract? An initial investigation , 1986 .
[8] V Canterini. Connectedness of geometric representation of substitutions of Pisot type , 2003 .
[9] Boris Solomyak,et al. Two-symbol Pisot substitutions have pure discrete spectrum , 2003, Ergodic Theory and Dynamical Systems.
[10] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[11] L. Zamboni,et al. Directed Graphs and Substitutions , 2001, Theory of Computing Systems.
[12] F. M. Dekking,et al. The spectrum of dynamical systems arising from substitutions of constant length , 1978 .
[13] Bernard Host,et al. Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable , 1986, Ergodic Theory and Dynamical Systems.
[14] Anne Siegel,et al. Représentation des systèmes dynamiques substitutifs non unimodulaires , 2003, Ergodic Theory and Dynamical Systems.
[15] Yvette Amice,et al. Les nombres p-adiques , 1975 .
[16] A. Siegel,et al. Geometric representation of substitutions of Pisot type , 2001 .
[17] A. Messaoudi,et al. Frontiere du fractal de Rauzy et systeme de numeration complexe , 2000 .
[18] C. Mauduit,et al. Substitution dynamical systems : Algebraic characterization of eigenvalues , 1996 .
[19] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.