Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs

Abstract This paper deals with uncertain multi-objective convex programming problems, where the data of the objective function or the constraints or both are allowed to be uncertain within specified uncertainty sets. We present sufficient conditions for the existence of highly robust weakly efficient solutions, that is, robust feasible solutions which are weakly efficient for any possible instance of the objective function within a specified uncertainty set. This is done by way of estimating the radius of highly robust weak efficiency under linearly distributed uncertainty of the objective functions. In the particular case of robust quadratic multi-objective programs, we show that these sufficient conditions can be expressed in terms of the original data of the problem, extending and improving the corresponding results in the literature for robust multi-objective linear programs under ball uncertainty.

[1]  Miguel A. Goberna,et al.  Constraint qualifications in linear vector semi-infinite optimization , 2013, Eur. J. Oper. Res..

[2]  Vaithilingam Jeyakumar,et al.  An Exact Formula for Radius of Robust Feasibility of Uncertain Linear Programs , 2017, J. Optim. Theory Appl..

[3]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[4]  Miguel A. Goberna,et al.  Constraint qualifications in convex vector semi-infinite optimization , 2016, Eur. J. Oper. Res..

[5]  Masahiro Inuiguchi,et al.  Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test , 1996, Fuzzy Sets Syst..

[6]  Miguel A. Goberna,et al.  Radius of robust feasibility formulas for classes of convex programs with uncertain polynomial constraints , 2016, Oper. Res. Lett..

[7]  F. Javier Toledo-Moreo,et al.  Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems , 2005, Math. Program..

[8]  Anita Schöbel,et al.  Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts , 2016, OR Spectr..

[9]  Andreas Löhne,et al.  Vector Optimization with Infimum and Supremum , 2011, Vector Optimization.

[10]  Vaithilingam Jeyakumar,et al.  Robust Solutions of MultiObjective Linear Semi-Infinite Programs under Constraint Data Uncertainty , 2014, SIAM J. Optim..

[11]  Panos M. Pardalos,et al.  Robust aspects of solutions in deterministic multiple objective linear programming , 2013, Eur. J. Oper. Res..

[12]  Matthias Ehrgott,et al.  Minmax robustness for multi-objective optimization problems , 2014, Eur. J. Oper. Res..

[13]  L. Cromme Strong uniqueness , 1978 .

[14]  Carlos Henggeler Antunes,et al.  Multiple objective linear programming models with interval coefficients - an illustrated overview , 2007, Eur. J. Oper. Res..

[15]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[16]  Milan Hladík,et al.  Complexity of necessary efficiency in interval linear programming and multiobjective linear programming , 2012, Optim. Lett..

[17]  Vaithilingam Jeyakumar,et al.  Robust solutions to multi-objective linear programs with uncertain data , 2014, Eur. J. Oper. Res..

[18]  G. Bitran Linear Multiple Objective Problems with Interval Coefficients , 1980 .

[19]  Andrea Raith,et al.  Bi-objective robust optimisation , 2016, Eur. J. Oper. Res..

[20]  R. Werner Robust Multiobjective Optimization , 2015 .

[21]  Margaret M. Wiecek,et al.  Robust Multiobjective Optimization for Decision Making Under Uncertainty and Conflict , 2016 .

[22]  A. Schöbel,et al.  The relationship between multi-objective robustness concepts and set-valued optimization , 2014 .

[23]  Majid Soleimani-Damaneh,et al.  Robustness in nonsmooth nonlinear multi-objective programming , 2015, Eur. J. Oper. Res..

[24]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[25]  G. Ivan,et al.  From scalar to vector optimization , 2003 .

[26]  Alfred Auslender,et al.  Stability in Mathematical Programming with Nondifferentiable Data , 1984 .

[27]  Johannes Jahn,et al.  Duality in vector optimization , 1983, Math. Program..

[28]  Gue Myung Lee,et al.  On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems , 2018, Ann. Oper. Res..

[29]  Marco A. López,et al.  Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases , 2011 .

[30]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..