Cosserat-Type Rods

In this chapter we discuss a Cosserat-type theory of rods. Cosserat-type rod theories are based on the consideration of a rod base curve as a deformable directed curve, that is a curve with attached deformable or non-deformable (rigid) vectors (directors), or based on the derivation of one-dimensional (1D) rod equations from the three-dimensional (3D) micropolar (Cosserat) continuum equations. In the literature are known theories of rods kinematics of which described by introduction of the translation vector and additionally p deformable directors or one deformable director or three unit orthogonal each other directors. The additional vector fields of directors describe the rotational (in some special cases additional) degrees of freedom of the rod. The aim of the chapter is to present a Cosserat-type theory of rods and to show various applications.

[1]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[2]  Michele Ciarletta,et al.  Non-Classical Elastic Solids , 1993 .

[3]  The Korn-type inequality in a Cosserat model for thin thermoelastic porous rods , 2012 .

[4]  R. C. Benson,et al.  Flexible Shells: Theory and Applications , 1984 .

[5]  P. Podio-Guidugli,et al.  Materials with spherical structure , 1981 .

[6]  W. Prager,et al.  Einführung in die Kontinuumsmechanik , 1961 .

[7]  H. Altenbach,et al.  On the theory of porous elastic rods , 2011 .

[8]  M. Rubin Cosserat Theories: Shells, Rods and Points , 2000 .

[9]  J. Jenkins Static Equilibrium of Granular Materials , 1975 .

[10]  Holm Altenbach,et al.  On a thermodynamic theory of rods with two temperature fields , 2012 .

[11]  Holm Altenbach,et al.  Modeling of Creep for Structural Analysis , 2007 .

[12]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[13]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[14]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[15]  The Nonlinear Thermodynamical Theory of Shells: Descent from 3-Dimensions without Thickness Expansions , 1984 .

[16]  Технология Springer Science+Business Media , 2013 .

[17]  M. Gurtin The Linear Theory of Elasticity , 1973 .

[18]  Stephen C. Cowin,et al.  A continuum theory for granular materials , 1972 .

[19]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[20]  P. M. Naghdi,et al.  On the theory of rods II. Developments by direct approach , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  H. Altenbach,et al.  On the Cosserat model for thin rods made of thermoelastic materials with voids , 2013 .

[22]  D. Iaşan Thermal effects in orthotropic porous elastic beams , 2009 .

[23]  P. M. Naghdi,et al.  On Thermal Effects in the Theory of Rods. , 1979 .

[24]  I. I. Vrabie C[0]-semigroups and applications , 2003 .

[25]  C. Keller Geochemical Thermodynamics, 2nd Edition , 1995 .

[26]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[27]  Victor L. Berdichevsky,et al.  Variational Principles of Continuum Mechanics , 2009 .

[28]  An Inequality of CauchySchwarz Type with Application in the Theory of Elastic Rods , 2011 .

[29]  Stephen C. Cowin,et al.  Linear elastic materials with voids , 1983 .

[30]  A. Morassi,et al.  Thin-walled Beams: A Derivation of Vlassov Theory via Γ-Convergence , 2007 .

[31]  Dewey H. Hodges,et al.  Nonlinear Composite Beam Theory , 2006 .

[32]  J. M. Viaño,et al.  Mathematical modelling of rods , 1996 .

[33]  Paolo Podio-Guidugli,et al.  IUTAM Symposium on Relations of Shell Plate Beam and 3D Models , 2008 .

[34]  Dorin Ieşan,et al.  A theory of thermoelastic materials with voids , 1986 .

[35]  James G. Simmonds A Simple Nonlinear Thermodynamic Theory of Arbitrary Elastic Beams , 2005 .

[36]  Holm Altenbach,et al.  An alternative determination of transverse shear stiffnesses for sandwich and laminated plates , 2000 .

[37]  Victor A. Eremeyev,et al.  Deformation analysis of functionally graded beams by the direct approach , 2012 .

[38]  On the theory of elastic shells made from a material with voids , 2006 .

[39]  R. D. Mindlin MICROSTRUCTURE IN LINEAR ELASTICITY , 1999 .

[40]  P. Podio-Guidugli,et al.  Internal Constraints, Reactive Stresses, and the Timoshenko Beam Theory , 2001 .

[41]  Philippe G. Ciarlet,et al.  Theory of Shells , 2000 .

[42]  Dorin Ieşan,et al.  Classical and Generalized Models of Elastic Rods , 2008 .

[43]  N. Meunier Recursive Derivation of One-Dimensional Models from Three-Dimensional Nonlinear Elasticity , 2008 .

[44]  S. Antman Nonlinear problems of elasticity , 1994 .

[45]  Andreas Öchsner,et al.  Cellular and Porous Materials in Structures and Processes , 2010 .

[46]  M. Bîrsan On a Thermodynamic Theory of Porous Cosserat Elastic Shells , 2006 .

[47]  Patrizio Neff,et al.  A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus , 2004 .

[48]  M. De Handbuch der Physik , 1957 .

[49]  Valery A. Svetlitsky Statics of Rods , 2000 .

[50]  Holm Altenbach,et al.  Direct approach-based analysis of plates composed of functionally graded materials , 2008 .

[51]  Victor A. Eremeyev,et al.  Thermomechanics of shells undergoing phase transition , 2011 .

[52]  Dan Tiba,et al.  The Control Variational Approach for Differential Systems , 2009, SIAM J. Control. Optim..

[53]  Stephen C. Cowin,et al.  A nonlinear theory of elastic materials with voids , 1979 .

[54]  M. Bîrsan Inequalities of Korn’s Type and Existence Results in the Theory of Cosserat Elastic Shells , 2008 .

[55]  H. Altenbach,et al.  Theory of thin thermoelastic rods made of porous materials , 2011 .

[56]  Patrizio Neff,et al.  A GEOMETRICALLY EXACT PLANAR COSSERAT SHELL-MODEL WITH MICROSTRUCTURE: EXISTENCE OF MINIMIZERS FOR ZERO COSSERAT COUPLE MODULUS , 2007 .

[57]  P. G. Ciarlet,et al.  An Introduction to Differential Geometry with Applications to Elasticity , 2006 .

[58]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[59]  H. Altenbach,et al.  On the bending of viscoelastic plates made of polymer foams , 2009 .

[60]  Pavel A. Zhilin,et al.  Mechanics of deformable directed surfaces , 1976 .

[61]  Gianfranco Capriz,et al.  Continua with Microstructure , 1989 .

[62]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.