Chimera states on the route from coherence to rotating waves.

We report different types of chimera states in the Kuramoto model with inertia. They arise on the route from coherence, via so-called solitary states, to the rotating waves. We identify the wide region in parameter space, in which a different type of chimera state, i.e., the imperfect chimera state, which is characterized by a certain number of oscillators that have escaped from the synchronized chimera's cluster, appears. We describe a mechanism for the creation of chimera states via the appearance of the solitary states. Our findings reveal that imperfect chimera states represent characteristic spatiotemporal patterns at the transition from coherence to incoherence.