Free volume properties of a linear soft polymer: a computer simulation study.

Molecular dynamics simulation of a linear soft polymer has been performed and the free volume properties of the system have been analyzed in detail in terms of the Voronoi polyhedra of the monomers. It is found that there are only small density fluctuations present in the system. The local environment of the monomers is found to be rather spherical, even in comparison with liquids of atoms or small molecules. The monomers are found to be, on average, eight coordinated by their nearest geometric neighbors, including intra-chain and inter-chain ones. The packing of the monomers is found to be rather compact, in a configuration of 1900 monomers there are, on average, only three voids large enough to incorporate a spherical particle as large as a monomer, indicating that the density of the large vacancies in the system is considerably, i.e., by a few orders of magnitude lower than in molecular liquids corresponding to roughly the same reduced densities.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[4]  K. Heinzinger,et al.  Grand canonical Monte Carlo simulation of liquid argon , 1986 .

[5]  A. Baranyai,et al.  Statistical geometry of molten alkali halides , 1986 .

[6]  V. Icke,et al.  Fragmenting the universe , 1987 .

[7]  L. Pusztai,et al.  Vacancies in molten salts: A characteristic feature of the structure , 1988 .

[8]  Faculteit der Wiskunde en Natuurwetenschappen,et al.  Fragmenting the universe. II - Voronoi vertices as Abell clusters , 1989 .

[9]  C. Mou,et al.  Molecular dynamics study of liquid-solid transition of dense Lennard-Jones liquid , 1992 .

[10]  L. Zaninetti The Voronoi tessellation generated from different distributions of seeds , 1992 .

[11]  G. Ruocco,et al.  Analysis of the network topology in liquid water and hydrogen sulphide by computer simulation , 1992 .

[12]  José L. F. Abascal,et al.  The Voronoi polyhedra as tools for structure determination in simple disordered systems , 1993 .

[13]  G. Ruocco,et al.  Molecular dynamics results for stretched water , 1993 .

[14]  Chung-Yuan Mou,et al.  A Voronoi polyhedra analysis of structures of liquid water , 1994 .

[15]  Herman J. C. Berendsen,et al.  Simulation of Water Transport through a Lipid Membrane , 1994 .

[16]  J. Abascal,et al.  Ionic association in electrolyte solutions: A Voronoi polyhedra analysis , 1994 .

[17]  N. N. Medvedev,et al.  Investigation of free volume percolation under the liquid-glass phase transition , 1995 .

[18]  H. Berendsen,et al.  Free volume properties of a simulated lipid membrane , 1996 .

[19]  Iosif I. Vaisman,et al.  Delaunay Tessellation of Proteins: Four Body Nearest-Neighbor Propensities of Amino Acid Residues , 1996, J. Comput. Biol..

[20]  Herman J. C. Berendsen,et al.  Permeation Process of Small Molecules across Lipid Membranes Studied by Molecular Dynamics Simulations , 1996 .

[21]  Luc Oger,et al.  Voronoi tessellation of packings of spheres: Topological correlation and statistics , 1996 .

[22]  M Mezei,et al.  Computer simulation studies of the fully solvated wild-type and mutated GnRH in extended and beta-turn conformations. , 1998, Journal of biomolecular structure & dynamics.

[23]  Witold Brostow,et al.  Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials , 1998 .

[24]  Wataru Shinoda,et al.  A Voronoi analysis of lipid area fluctuation in a bilayer , 1998 .

[25]  Thomas M Truskett,et al.  Free volume in the hard sphere liquid , 1998, Molecular Physics.

[26]  C. Mou,et al.  Orientational Relaxation Dynamics of Liquid Water Studied by Molecular Dynamics Simulation , 1999 .

[27]  Alexander D. MacKerell,et al.  TIT for TAT: the properties of inosine and adenosine in TATA box DNA. , 1999, Journal of biomolecular structure & dynamics.

[28]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[29]  P. Jedlovszky Voronoi polyhedra analysis of the local structure of water from ambient to supercritical conditions , 1999 .

[30]  R. Mountain Voids and clusters in expanded water , 1999 .

[31]  J. Troy,et al.  Modeling cat retinal beta-cell arrays , 2000, Visual Neuroscience.

[32]  Jose Angel Bolea,et al.  Irregular S-cone mosaics in felid retinas. Spatial interaction with axonless horizontal cells, revealed by cross correlation. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  J Chomilier,et al.  Voronoï tessellation reveals the condensed matter character of folded proteins. , 2000, Physical review letters.

[34]  P. Jedlovszky The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water, methanol, and HF , 2000 .

[35]  Calculation of the Free Energy Profile of H2O, O2, CO, CO2, NO, and CHCl3 in a Lipid Bilayer with a Cavity Insertion Variant of the Widom Method , 2000 .

[36]  D. Engelman,et al.  Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations. , 2000, Journal of molecular biology.

[37]  V. Voloshin,et al.  Calculation of mean distances between the randomly distributed particles in the model of points and hard spheres (the method of Voronoi polyhedra) , 2001 .

[38]  Mark Gerstein,et al.  Determining the minimum number of types necessary to represent the sizes of protein atoms , 2001, Bioinform..

[39]  Fabrice Leclerc,et al.  Effective atom volumes for implicit solvent models: comparison between Voronoi volumes and minimum fluctuation volumes , 2001, J. Comput. Chem..

[40]  Mark Gerstein,et al.  Calculations of protein volumes: sensitivity analysis and parameter database , 2002, Bioinform..

[41]  V. P. Voloshin,et al.  Void space analysis of the structure of liquids , 2002 .

[42]  M. Mezei,et al.  Effect of Cholesterol on the Properties of Phospholipid Membranes. 2. Free Energy Profile of Small Molecules , 2003 .

[43]  M. Mezei,et al.  Effect of Cholesterol on the Properties of Phospholipid Membranes. 3. Local Lateral Structure , 2004 .

[44]  M. Hirabayashi,et al.  Voronoi space division of a polymer: topological effects, free volume, and surface end segregation. , 2004, The Journal of chemical physics.