A modified slacks‐based ranking method handling negative data in data envelopment analysis

[1]  Liang Liang,et al.  Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis , 2009 .

[2]  Ali Emrouznejad,et al.  Ranking efficient decision-making units in data envelopment analysis using fuzzy concept , 2010, Comput. Ind. Eng..

[3]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[4]  Ying Luo,et al.  DEA efficiency assessment using ideal and anti-ideal decision making units , 2006, Appl. Math. Comput..

[5]  Gang Cheng,et al.  A variant of radial measure capable of dealing with negative inputs and outputs in data envelopment analysis , 2013, Eur. J. Oper. Res..

[6]  Ying-Ming Wang,et al.  Measuring the performances of decision-making units using interval efficiencies , 2007 .

[7]  Holger Scheel,et al.  Undesirable outputs in efficiency valuations , 2001, Eur. J. Oper. Res..

[8]  Jian-Bo Yang,et al.  Measuring the performances of decision-making units using geometric average efficiency , 2007, J. Oper. Res. Soc..

[9]  W. Liu,et al.  A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative outputs and inputs , 2007, J. Oper. Res. Soc..

[10]  Zilla Sinuany-Stern,et al.  Review of ranking methods in the data envelopment analysis context , 2002, Eur. J. Oper. Res..

[11]  T. Sexton,et al.  Data Envelopment Analysis: Critique and Extensions , 1986 .

[12]  William W. Cooper,et al.  The Range Adjusted Measure (RAM) in DEA: A Response to the Comment by Steinmann and Zweifel , 2001 .

[13]  Toshiyuki Sueyoshi,et al.  DEA non-parametric ranking test and index measurement: slack-adjusted DEA and an application to Japanese agriculture cooperatives , 1999 .

[14]  Adli Mustafa,et al.  Cross-ranking of Decision Making Units in Data Envelopment Analysis , 2013 .

[15]  Udaya Shetty,et al.  Ranking efficient DMUs based on single virtual inefficient DMU in DEA , 2010 .

[16]  Fuh-Hwa Franklin Liu,et al.  Ranking of units on the DEA frontier with common weights , 2008, Comput. Oper. Res..

[17]  Gary R. Reeves,et al.  A multiple criteria approach to data envelopment analysis , 1999, Eur. J. Oper. Res..

[18]  Marvin D. Troutt,et al.  A maximum decisional efficiency estimation principle , 1995 .

[19]  Lawrence M. Seiford,et al.  Data envelopment analysis (DEA) - Thirty years on , 2009, Eur. J. Oper. Res..

[20]  William W. Cooper,et al.  MODELS AND MEASURES FOR EFFICIENCY DOMINANCE IN DEA Part I: Additive Models and MED Measures * , 1996 .

[21]  F. Hosseinzadeh Lotfi,et al.  A new DEA ranking system based on changing the reference set , 2007, Eur. J. Oper. Res..

[22]  Tomoe Entani,et al.  Dual models of interval DEA and its extension to interval data , 2002, Eur. J. Oper. Res..

[23]  Gholam Reza Jahanshahloo,et al.  A ranking method based on a full-inefficient frontier , 2006 .

[24]  Feng Yang,et al.  Ranking of DMUs with interval cross-efficiencies based on absolute dominance , 2016, Int. J. Inf. Decis. Sci..

[25]  Zilla Sinuany-Stern,et al.  Scaling units via the canonical correlation analysis in the DEA context , 1997, Eur. J. Oper. Res..

[26]  W. Cooper,et al.  RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA , 1999 .

[27]  Desheng Dash Wu,et al.  Performance evaluation: An integrated method using data envelopment analysis and fuzzy preference relations , 2009, Eur. J. Oper. Res..

[28]  Jesús T. Pastor,et al.  Units invariant and translation invariant DEA models , 1995, Oper. Res. Lett..

[29]  Feng Yang,et al.  Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis , 2012, Eur. J. Oper. Res..

[30]  Ali Emrouznejad,et al.  A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA , 2010, Eur. J. Oper. Res..

[31]  Saeed Zolfaghari,et al.  Review of efficiency ranking methods in data envelopment analysis , 2017 .

[32]  Ruiyue Lin,et al.  A directional distance based super-efficiency DEA model handling negative data , 2017, J. Oper. Res. Soc..

[33]  Zilla Sinuany-Stern,et al.  DEA and the discriminant analysis of ratios for ranking units , 1998, Eur. J. Oper. Res..

[34]  De-An Wu,et al.  A DEA- COMPROMISE PROGRAMMING MODEL FOR COMPREHENSIVE RANKING , 2004 .

[35]  Boaz Golany,et al.  Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions , 1985 .

[36]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[37]  Abdollah Hadi-Vencheh,et al.  A new super-efficiency model in the presence of negative data , 2013, J. Oper. Res. Soc..

[38]  P. Andersen,et al.  A procedure for ranking efficient units in data envelopment analysis , 1993 .

[39]  John S. Liu,et al.  A survey of DEA applications , 2013 .

[40]  Emmanuel Thanassoulis,et al.  Negative data in DEA: a directional distance approach applied to bank branches , 2004, J. Oper. Res. Soc..

[41]  Ali Emrouznejad,et al.  A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016 , 2018 .

[42]  Jesús T. Pastor,et al.  Chapter 3 Translation invariance in data envelopment analysis: A generalization , 1996, Ann. Oper. Res..

[43]  L. Seiford,et al.  Translation invariance in data envelopment analysis , 1990 .

[44]  Rodney H. Green,et al.  Efficiency and Cross-efficiency in DEA: Derivations, Meanings and Uses , 1994 .

[45]  F. Førsund,et al.  Slack-adjusted efficiency measures and ranking of efficient units , 1996 .

[46]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[47]  Subhash C. Ray,et al.  The directional distance function and measurement of super-efficiency: an application to airlines data , 2008, J. Oper. Res. Soc..

[48]  Gongbing Bi,et al.  A new DEA-based method for fully ranking all decision-making units , 2010, Expert Syst. J. Knowl. Eng..

[49]  Mohammad Izadikhah,et al.  A new data envelopment analysis method for ranking decision making units: an application in industrial parks , 2015, Expert Syst. J. Knowl. Eng..

[50]  Jiazhen Huo,et al.  Super-efficiency based on a modified directional distance function , 2013 .

[51]  Josef Jablonsky,et al.  Multicriteria approaches for ranking of efficient units in DEA models , 2012, Central Eur. J. Oper. Res..

[52]  Ying Luo,et al.  Common weights for fully ranking decision making units by regression analysis , 2011, Expert Syst. Appl..