The extended switching regression model: Allowing for multiple latent state variables

In this paper we extend the widely followed approach of switching regression models, i.e. models in which the parameters are determined by a latent discrete state variable. We construct a model with several latent state variables, where the model parameters are partitioned into disjoint groups, each one of which is independently determined by a corresponding state variable. Such a model is called an extended switching regression (ESR) model. We develop an EM algorithm to estimate the model parameters, and discuss the consistency and asymptotic normality of the maximum likelihood estimates. Finally, we use the ESR model to combine volatility forecasts of foreign exchange rates. The resulting forecast combination using the ESR model tends to dominate those generated by traditional procedures. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  R. Quandt A New Approach to Estimating Switching Regressions , 1972 .

[2]  H. White Asymptotic theory for econometricians , 1985 .

[3]  James D. Hamilton,et al.  Long Swings in the Dollar: Are They in the Data and Do Markets Know It? The American Economic Review , 1990 .

[4]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[5]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[6]  Robert G. Bartle,et al.  A modern theory of integration , 2001 .

[7]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[8]  R. Quandt The Estimation of the Parameters of a Linear Regression System Obeying Two Separate Regimes , 1958 .

[9]  Wai Keung Li,et al.  On a Mixture Autoregressive Conditional Heteroscedastic Model , 2001 .

[10]  T. Vogelsang Unit Roots, Cointegration, and Structural Change , 2001 .

[11]  Jeffrey R. Russell,et al.  Forecasting Transaction Rates: The Autoregressive Conditional Duration Model , 1994 .

[12]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[13]  Authors' Biographies , 2005 .

[14]  Mark P. Taylor,et al.  Exchange Rate Economics: A Survey , 1991, SSRN Electronic Journal.

[15]  H. White,et al.  Misspecified models with dependent observations , 1982 .

[16]  A. F. Darrat,et al.  On Testing the Random Walk Hypothesis: A Model-Comparison Approach , 2000 .

[17]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[18]  Clive W. J. Granger,et al.  Prediction with a generalized cost of error function , 1969 .

[19]  C. Granger,et al.  Improved methods of combining forecasts , 1984 .

[20]  A. Raftery,et al.  Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models , 1996 .

[21]  Neal O. Jeffries Logistic Mixtures of Generalized Linear Model Times Series , 1998 .

[22]  R. Clemen Combining forecasts: A review and annotated bibliography , 1989 .

[23]  N. Shephard,et al.  Autoregressive conditional root model , 2002 .

[24]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[25]  Arnold Zellner,et al.  "Bayesian and Non-Bayesian Methods for Combining Models and Forecasts with Applications to Forecasting International Growth Rates" , 2004 .

[26]  H. White,et al.  A Unified Theory of Estimation and Inference for Nonlinear Dynamic Models , 1988 .

[27]  R. Quandt Tests of the Hypothesis That a Linear Regression System Obeys Two Separate Regimes , 1960 .

[28]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[29]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[30]  N. Kiefer Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model , 1978 .

[31]  J. B. Ramsey,et al.  Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .

[32]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[33]  D. Andrews CONSISTENCY IN NONLINEAR ECONOMETRIC MODELS: A GENERIC UNIFORM LAW OF LARGE NUMBERS , 1987 .

[34]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[35]  J. Davidson Stochastic Limit Theory , 1994 .

[36]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[37]  Lei Xu,et al.  Comparison between Mixture of ARMA and Mixture of AR Model with Application to Time Series Forecasting , 1998, ICONIP.

[38]  F. Diebold,et al.  Forecast Evaluation and Combination , 1996 .

[39]  R. Donaldson,et al.  An artificial neural network-GARCH model for international stock return volatility , 1997 .

[40]  W. Newey,et al.  Uniform Convergence in Probability and Stochastic Equicontinuity , 1991 .

[41]  Pentti Saikkonen,et al.  Modeling the U.S. Short-Term Interest Rate by Mixture Autoregressive Processes , 2001 .

[42]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[43]  D. Hendry,et al.  Econometric Evaluation of Linear Macro-Economic Models , 1986 .

[44]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[45]  R. A. Boyles On the Convergence of the EM Algorithm , 1983 .

[46]  F. Klaassen Long Swings in Exchange Rates: Are They Really in the Data? , 1999 .

[47]  James D. Hamilton Analysis of time series subject to changes in regime , 1990 .

[48]  H. Bauer,et al.  Probability Theory and Elements of Measure Theory , 1982 .

[49]  H. White,et al.  Nonlinear Regression with Dependent Observations , 1984 .

[50]  W. Li,et al.  On a mixture autoregressive model , 2000 .

[51]  Adrian Pagan,et al.  Alternative Models for Conditional Stock Volatility , 1989 .

[52]  Anil K. Bera,et al.  Model specification tests: A simultaneous approach☆ , 1982 .

[53]  R. Redner Note on the Consistency of the Maximum Likelihood Estimate for Nonidentifiable Distributions , 1981 .

[54]  Kenneth S. Rogoff,et al.  Exchange rate models of the seventies. Do they fit out of sample , 1983 .

[55]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[56]  Mark J. Kamstra,et al.  Forecast combining with neural networks , 1996 .

[57]  J. M. Bates,et al.  The Combination of Forecasts , 1969 .

[58]  W. Li,et al.  On a logistic mixture autoregressive model , 2001 .