Tau Activates Transposable Elements in Alzheimer’s Disease

[1]  J. Wood,et al.  Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila , 2016, Proceedings of the National Academy of Sciences.

[2]  Mark T. W. Ebbert,et al.  Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients , 2017, Human molecular genetics.

[3]  P. Jin,et al.  Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration. , 2012, Human molecular genetics.

[4]  Geoffrey J. Faulkner,et al.  Ubiquitous L1 Mosaicism in Hippocampal Neurons , 2015, Cell.

[5]  J. Dubnau,et al.  Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS , 2016, bioRxiv.

[6]  T. Heidmann,et al.  Characterization of the low-copy HERV-Fc family: evidence for recent integrations in primates of elements with coding envelope genes. , 2003, Virology.

[7]  L. Stein,et al.  TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA , 2014, The EMBO journal.

[8]  Manolis Kellis,et al.  Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease , 2015, Nature.

[9]  S. Parkhurst,et al.  The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. , 1986, Molecular and cellular biology.

[10]  Andreas R. Pfenning,et al.  Epigenome-wide study uncovers tau pathology-driven changes of chromatin organization in the aging human brain , 2018, bioRxiv.

[11]  J. V. Moran,et al.  Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells , 2011, Proceedings of the National Academy of Sciences.

[12]  M. Feany,et al.  A neuroprotective role for the DNA damage checkpoint in tauopathy , 2012, Aging cell.

[13]  Manolis Kellis,et al.  Alzheimery's disease pathology is associated with early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci , 2014, Nature Neuroscience.

[14]  W. Hauswirth,et al.  DICER1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88 , 2012, Cell.

[15]  D. Butterfield,et al.  Human endogenous retrovirus glycoprotein–mediated induction of redox reactants causes oligodendrocyte death and demyelination , 2004, Nature Neuroscience.

[16]  Dragan Maric,et al.  Human endogenous retrovirus-K contributes to motor neuron disease , 2015, Science Translational Medicine.

[17]  C. Walsh,et al.  Single-Neuron Sequencing Analysis of L1 Retrotransposition and Somatic Mutation in the Human Brain , 2012, Cell.

[18]  Z. Weng,et al.  Transposition-Driven Genomic Heterogeneity in the Drosophila Brain , 2013, Science.

[19]  J. Stoye,et al.  Immune responses to endogenous retroelements: taking the bad with the good , 2016, Nature Reviews Immunology.

[20]  J. Mattick,et al.  Somatic retrotransposition alters the genetic landscape of the human brain , 2011, Nature.

[21]  Fred H. Gage,et al.  L1 retrotransposition in neurons is modulated by MeCP2 , 2010, Nature.

[22]  F. LaFerla,et al.  Alzheimer's disease. , 2010, The New England journal of medicine.

[23]  L. Tsai,et al.  DNA Damage and Its Links to Neurodegeneration , 2014, Neuron.

[24]  J. Rothstein,et al.  Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis , 2011, Annals of neurology.

[25]  Fred H. Gage,et al.  Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition , 2005, Nature.

[26]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[27]  J. V. Moran,et al.  Dynamic interactions between transposable elements and their hosts , 2011, Nature Reviews Genetics.

[28]  Joshua M. Shulman,et al.  Tauopathy in Drosophila: Neurodegeneration Without Neurofibrillary Tangles , 2001, Science.

[29]  M. Hemberg,et al.  Tau promotes neurodegeneration through global chromatin relaxation , 2014, Nature Neuroscience.

[30]  J. Vonsattel,et al.  DNA strand breaks in Alzheimer's disease , 1999, Brain Research.

[31]  Gene W. Yeo,et al.  L1 retrotransposition in human neural progenitor cells , 2009, Nature.

[32]  J. Dubnau,et al.  Activation of transposable elements during aging and neuronal decline in Drosophila , 2013, Nature Neuroscience.

[33]  Burkhard Becher,et al.  Immune attack: the role of inflammation in Alzheimer disease , 2015, Nature Reviews Neuroscience.

[34]  E. Rogaev,et al.  Quantitative analysis of L1-retrotransposons in Alzheimer’s disease and aging , 2017, Biochemistry (Moscow).

[35]  C. Tench,et al.  The association between human endogenous retroviruses and multiple sclerosis: A systematic review and meta-analysis , 2017, PloS one.

[36]  P. Deininger Alu elements: know the SINEs , 2011, Genome Biology.

[37]  J. Dubnau,et al.  Transposable Elements in TDP-43-Mediated Neurodegenerative Disorders , 2012, PloS one.

[38]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  W. Burhans,et al.  Retrotransposition is associated with genome instability during chronological aging , 2011, Proceedings of the National Academy of Sciences.

[40]  C. DeCarli,et al.  Impact of multiple pathologies on the threshold for clinically overt dementia , 2017, Acta Neuropathologica.

[41]  Robert D. Finn,et al.  The Dfam database of repetitive DNA families , 2015, Nucleic Acids Res..

[42]  Zhandong Liu,et al.  An ultra-fast and scalable quantification pipeline for transposable elements from next generation sequencing data , 2018, PSB.