Shear-Bending-Torsion Interaction in Structural Concrete Members: A Nonlinear Coupled Sectional Approach

Inclined cracks that take place in reinforced concrete elements due to tangential internal forces, such as shear and torsion, produce a non-isotropic response on the structure in the post-cracked regime and up to failure, also known as crack-induced-anisotropy. The result is that all six internal forces acting in a cross-section are generally coupled.

[1]  Mervyn J. Kowalsky,et al.  In-Plane Testing of Damaged Masonry Wall Repaired with FRP , 2002 .

[2]  Antonino D'Aveni,et al.  Bending Moment–Shear Force Interaction Domains for Prestressed Concrete Beams , 2005 .

[3]  F. Baron,et al.  Matrix Analysis of Structures Curved in Space , 1961 .

[4]  Michael P. Collins,et al.  Predicting the Response of Reinforced Concrete Beams Subjected to Shear Using the Modified Compression Field Theory , 1988 .

[5]  Karl S. Pister,et al.  Assessment of cap model: consistent return algorithms and rate-dependent extension , 1988 .

[6]  Alan T. Nettles,et al.  Basic mechanics of laminated composite plates , 1994 .

[7]  Jan Bäcklund,et al.  Large deflection analysis of elasto-plastic beams and frames , 1976 .

[8]  J. Reddy ON LOCKING-FREE SHEAR DEFORMABLE BEAM FINITE ELEMENTS , 1997 .

[9]  Ignacio Carol,et al.  Nonlinear time-dependent analysis of planar frames using an ‘exact’ formulation—I. Theory , 1989 .

[10]  Ever J. Barbero,et al.  A 3-D finite element for laminated composites with 2-D kinematic constraints , 1992 .

[11]  Carlos E. S. Cesnik,et al.  Variational-asymptotical analysis of initially twisted and curved composite beams , 1992 .

[12]  Michael P. Collins,et al.  ANALYSIS OF SECTIONS SUBJECTED TO COMBINED SHEAR AND TORSION--A THEORETICAL MODEL , 1995 .

[13]  Yiu-Wing Mai,et al.  Advances in Fracture Research , 1997 .

[14]  Young-Jin Kang,et al.  Nonlinear Analysis of Prestressed Concrete Frames , 1980 .

[15]  P Lampert POSTCRACKING STIFFNESS OF REINFORCED CONCRETE BEAMS IN TORSION AND BENDING , 1971 .

[16]  F. Filippou,et al.  Mixed formulation of nonlinear beam finite element , 1996 .

[17]  D. Hodges,et al.  Validation of the Variational Asymptotic Beam Sectional Analysis , 2002 .

[18]  A. Marí,et al.  Coupled model for the nonlinear analysis of sections made of anisotropic materials, subjected to general 3D loading. Part 2: Implementation and validation , 2006 .

[19]  Antonio Ricardo Marí Bernat,et al.  Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading. Part 1: Theoretical formulation , 2006 .

[20]  Michael P. Collins,et al.  Combined Torsion and Bending in Reinforced and Prestressed Concrete Beams , 2003 .

[21]  Y. J. Kang Nonlinear geometric, material and time dependent analysis of reinforced and prestressed concrete frames , 1977 .

[22]  Michael P. Collins,et al.  Diagonal Compression Field theory-ARational Model For Structural Concrete in Pure Torsion , 1974 .

[23]  Sergio Oller,et al.  A directional damage model , 2003 .

[24]  A. Jefferson ANISOTROPIC DAMAGE MODEL DERIVED FROM RANDOM FIBRE NETWORK , 2000 .

[25]  Thomas T. C. Hsu,et al.  Torsion of Reinforced Concrete , 1984 .

[26]  M A Ketchum,et al.  REDISTRIBUTION OF STRESSES IN SEGMENTALLY ERECTED PRESTRESSED CONCRETE BRIDGES. FINAL REPORT , 1986 .

[27]  Antonio R. Marí,et al.  Numerical simulation of the segmental construction of three dimensional concrete frames , 2000 .

[28]  Marco Petrangeli,et al.  Fiber Element for Cyclic Bending and Shear of RC Structures. I: Theory , 1999 .

[29]  D. Murray,et al.  A 3-D HYPOELASTIC CONCRETE CONSTITUTIVE RELATIONSHIP , 1979 .

[30]  Juan A. Sobrino,et al.  Towards Advanced Composite Material Footbridges , 2002 .

[31]  Dewey H. Hodges,et al.  Validation of the variational asymptotic beam sectional analysis (VABS) , 2001 .

[32]  A C Scordelis,et al.  NON=LINEAR SEGMENTAL ANALYSIS OF REINFORCED AND PRESTRESSED CONCRETE BRIDGES , 1990 .

[33]  Winston M. Onsongo The diagonal compression field theory for reinforced concrete beams subjected to combined torsion, flexure and axial load , 1978 .

[34]  Erasmo Carrera,et al.  Multilayered Shell Theories Accounting for Layerwise Mixed Description, Part 2: Numerical Evaluations , 1999 .

[35]  Wai-Fah Chen Plasticity in reinforced concrete , 1982 .

[36]  null null,et al.  Recent Approaches to Shear Design of Structural Concrete , 1998 .

[37]  Pere C. Prat,et al.  Microplane Model for Brittle-Plastic Material: I. Theory , 1988 .

[38]  E. Barbero Introduction to Composite Materials Design , 1998 .

[39]  Comite Euro-International du Beton Rc Elements Under Cyclic Loading: State of the Art Report , 1996 .

[40]  Angel Lopez Rodriguez Estudio de la evolución hasta la rotura de tableros continuos de puentes de hormigón pretensado de planta curva o esviada , 1987 .

[41]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[42]  Antonio R. Marí,et al.  Multiaxial-coupled analysis of RC cross-sections subjected to combined forces , 2007 .

[43]  Jacky Mazars,et al.  Prediction of the failure and size effect in concrete via a bi-scale damage approach , 1992 .

[44]  E. Bentz Sectional analysis of reinforced concrete members , 2000 .

[45]  Ferdinando Auricchio,et al.  Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT , 1999 .

[46]  Ferdinando Auricchio,et al.  Refined First-Order Shear Deformation Theory Models for Composite Laminates , 2003 .

[47]  Antonio R. Marí,et al.  NONLINEAR TIME-DEPENDENT ANALYSIS OF SEGMENTALLY CONSTRUCTED STRUCTURES , 1998 .

[48]  Alex H. Barbat,et al.  Una formulación matricial generalizada. Parte 2: Análisis dinámico , 1995 .

[49]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[50]  Mjn Priestley,et al.  Seismic Design and Retrofit of Bridges , 1996 .