Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdus aromaticivorans

[1]  R. Sawers o‐Phthalate derived from plastics’ plasticizers and a bacterium's solution to its anaerobic degradation , 2018, Molecular microbiology.

[2]  M. Boll,et al.  Evolution of a xenobiotic degradation pathway: formation and capture of the labile phthaloyl‐CoA intermediate during anaerobic phthalate degradation , 2018, Molecular microbiology.

[3]  R. Mahadevan,et al.  Biosynthesis and Activity of Prenylated FMN Cofactors. , 2018, Cell chemical biology.

[4]  E. Díaz,et al.  Anaerobic pathways for the catabolism of aromatic compounds , 2018 .

[5]  A. Giwercman,et al.  Impact of Di-2-Ethylhexyl Phthalate Metabolites on Male Reproductive Function: a Systematic Review of Human Evidence , 2018, Current Environmental Health Reports.

[6]  Wen-Tso Liu,et al.  Thermodynamically diverse syntrophic aromatic compound catabolism , 2017, Environmental microbiology.

[7]  N. Kamimura,et al.  Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. , 2017, Journal of hazardous materials.

[8]  Georg Steinkellner,et al.  Regioselective para‐Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase , 2017, Angewandte Chemie.

[9]  A. Pierik,et al.  Phthaloyl‐coenzyme A decarboxylase from Thauera chlorobenzoica: the prenylated flavin‐, K+‐ and Fe2+‐dependent key enzyme of anaerobic phthalate degradation , 2017, Environmental microbiology.

[10]  K. Fisher,et al.  Oxidative Maturation and Structural Characterization of Prenylated FMN Binding by UbiD, a Decarboxylase Involved in Bacterial Ubiquinone Biosynthesis* , 2017, The Journal of Biological Chemistry.

[11]  N. Scrutton,et al.  Sweating the assets of flavin cofactors: new insight of chemical versatility from knowledge of structure and mechanism. , 2016, Current opinion in structural biology.

[12]  B. Schink,et al.  Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01. , 2016, Environmental microbiology.

[13]  N. Jehmlich,et al.  An unusual strategy for the anoxic biodegradation of phthalate , 2016, The ISME Journal.

[14]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[15]  Zhi-Dan Wen,et al.  Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. , 2016, The Science of the total environment.

[16]  T. Woyke,et al.  The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. , 2015, Environmental microbiology.

[17]  Sunil Kumar,et al.  A monograph on the remediation of hazardous phthalates. , 2015, Journal of hazardous materials.

[18]  B. Schink,et al.  Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01T , 2015, Standards in genomic sciences.

[19]  Mark D. White,et al.  UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis , 2015, Nature.

[20]  Rebecca Beveridge,et al.  New cofactor supports α,β-unsaturated acid decarboxylation via 1,3-dipolar cycloaddition , 2015, Nature.

[21]  X. Lin,et al.  Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase. , 2015, ACS chemical biology.

[22]  J. García,et al.  Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli. , 2014, Environmental microbiology reports.

[23]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[24]  T. Woyke,et al.  Draft Genome Sequence of Syntrophorhabdus aromaticivorans Strain UI, a Mesophilic Aromatic Compound-Degrading Syntroph , 2014, Genome Announcements.

[25]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[26]  G. Schneider,et al.  Structural Insights into the UbiD Protein Family from the Crystal Structure of PA0254 from Pseudomonas aeruginosa , 2013, PloS one.

[27]  Jacob H. Jacob,et al.  Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. , 2013, Environmental microbiology.

[28]  H. Mouttaki,et al.  Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. , 2012, Environmental microbiology.

[29]  J. Heider,et al.  Microbial degradation of aromatic compounds — from one strategy to four , 2011, Nature Reviews Microbiology.

[30]  R. J. Sheehan,et al.  Terephthalic Acid, Dimethyl Terephthalate, and Isophthalic Acid , 2011 .

[31]  G. Schneider,et al.  Structure of PA4019, a putative aromatic acid decarboxylase from Pseudomonas aeruginosa. , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[32]  T. Rattei,et al.  Genomic insights into the metabolic potential of the polycyclic aromatic hydrocarbon degrading sulfate-reducing Deltaproteobacterium N47. , 2011, Environmental microbiology.

[33]  Thomas Rattei,et al.  Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. , 2010, Environmental microbiology.

[34]  M. Kawamukai,et al.  PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. , 2010, Journal of bioscience and bioengineering.

[35]  R. Gunsalus,et al.  Syntrophy in anaerobic global carbon cycles. , 2009, Current opinion in biotechnology.

[36]  Tong Zhang,et al.  Phthalates biodegradation in the environment , 2008, Applied Microbiology and Biotechnology.

[37]  C. Vamsee-Krishna,et al.  Bacterial degradation of phthalate isomers and their esters , 2008, Indian Journal of Microbiology.

[38]  Y. Kamagata,et al.  Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the First Cultured Anaerobe Capable of Degrading Phenol to Acetate in Obligate Syntrophic Associations with a Hydrogenotrophic Methanogen , 2008, Applied and Environmental Microbiology.

[39]  Mutsuko Hirata-Koizumi,et al.  Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction. , 2008, Regulatory toxicology and pharmacology : RTP.

[40]  Won Seok Jung,et al.  Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid chromatography-electrospray ionization-mass spectrometry. , 2007, Journal of mass spectrometry : JMS.

[41]  Jd Gu,et al.  Environmental fate of endocrine-disrupting dimethyl phthalate esters (DMPE) under sulfate-reducing condition. , 2007, The Science of the total environment.

[42]  J. Gu,et al.  Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr Isolated from Wetland sediment. , 2007, The Science of the total environment.

[43]  Jia Cao,et al.  Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y , 2007, Applied Microbiology and Biotechnology.

[44]  Jun Liu,et al.  Ubiquinone (coenzyme Q) biosynthesis in Chlamydophila pneumoniae AR39: identification of the ubiD gene. , 2006, Acta biochimica et biophysica Sinica.

[45]  C. Vamsee-Krishna,et al.  Biodegradation of Phthalate Isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4 , 2006, Applied Microbiology and Biotechnology.

[46]  Hideki Harada,et al.  Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens , 2006, Archives of Microbiology.

[47]  R. Reski,et al.  Gene clusters involved in anaerobic benzoate degradation of Geobacter metallireducens , 2005, Molecular microbiology.

[48]  Jun-hua Yao,et al.  Degradation of dimethyl terephthalate by Pasteurella multocida Sa and Sphingomonas paucimobilis Sy isolated from mangrove sediment , 2005 .

[49]  L. Pan,et al.  Transformation of dimethyl phthalate, dimethyl isophthalate and dimethyl terephthalate by Rhodococcus rubber Sa and modeling the processes using the modified Gompertz model , 2005 .

[50]  M. Wensing,et al.  Plastics additives in the indoor environment--flame retardants and plasticizers. , 2005, The Science of the total environment.

[51]  L. Hung,et al.  Crystal structure of a dodecameric FMN‐dependent UbiX‐like decarboxylase (Pad1) from Escherichia coli O157: H7 , 2004, Protein science : a publication of the Protein Society.

[52]  G. Fuchs,et al.  Phenylphosphate Carboxylase: a New C-C Lyase Involved in Anaerobic Phenol Metabolism in Thauera aromatica , 2004, Journal of bacteriology.

[53]  Y. Kamagata,et al.  Identification and Isolation of Anaerobic, Syntrophic Phthalate Isomer-Degrading Microbes from Methanogenic Sludges Treating Wastewater from Terephthalate Manufacturing , 2004, Applied and Environmental Microbiology.

[54]  Dirk Springael,et al.  Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. , 2004, Trends in microbiology.

[55]  J. Bastide,et al.  Dimethylphthalate hydrolysis by specific microbial esterase. , 2003, Chemosphere.

[56]  Y. Kamagata,et al.  Sporotomaculum syntrophicum sp. nov., a novel anaerobic, syntrophic benzoate-degrading bacterium isolated from methanogenic sludge treating wastewater from terephthalate manufacturing , 2003, Archives of Microbiology.

[57]  E. Hammer,et al.  Molecular analysis of aerobic phenylacetate degradation in Azoarcus evansii , 2002, Molecular Genetics and Genomics.

[58]  J. Heider,et al.  Aerobic metabolism of phenylacetic acids in Azoarcus evansii , 2002, Archives of Microbiology.

[59]  E. R. Olivera,et al.  The phenylacetyl‐CoA catabolon: a complex catabolic unit with broad biotechnological applications , 2001, Molecular microbiology.

[60]  Haitao Zhang,et al.  Identification of the ubiD Gene on theEscherichia coli Chromosome , 2000, Journal of bacteriology.

[61]  G. Fuchs,et al.  Genes Involved in Anaerobic Metabolism of Phenol in the Bacterium Thauera aromatica , 2000, Journal of bacteriology.

[62]  M. El-Said Mohamed Biochemical and Molecular Characterization of Phenylacetate-Coenzyme A Ligase, an Enzyme Catalyzing the First Step in Aerobic Metabolism of Phenylacetic Acid inAzoarcus evansii , 2000, Journal of bacteriology.

[63]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[64]  G. Lettinga,et al.  Anaerobic Degradation of Phthalate Isomers by Methanogenic Consortia , 1999, Applied and Environmental Microbiology.

[65]  G. Burchhardt,et al.  Anaerobic metabolism of aromatic compounds via the benzoyl‐CoA pathway , 1998 .

[66]  Dennis R. Peterson,et al.  The environmental fate of phthalate esters: A literature review , 1997 .

[67]  B. Schink Energetics of syntrophic cooperation in methanogenic degradation , 1997, Microbiology and molecular biology reviews : MMBR.

[68]  G. Fuchs,et al.  Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism , 1992, Journal of bacteriology.

[69]  J. Luengo,et al.  Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. , 1990, The Journal of biological chemistry.

[70]  T. Nozawa,et al.  Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium , 1988, Journal of bacteriology.

[71]  A. Böckler,et al.  Studies on the anaerobic degradation of benzoic acid and 2-aminobenzoic acid by a denitrifying Pseudomonas strain , 1987, Archives of Microbiology.

[72]  O. G. Nilsen,et al.  Phthalate esters , 1984, Archives of Toxicology.

[73]  B. F. Taylor,et al.  Bacterial Decarboxylation of o-Phthalic Acids , 1983, Applied and environmental microbiology.

[74]  D. W. Ribbons,et al.  Metabolism of dibutylphthalate and phthalate by Micrococcus sp. strain 12B , 1982, Journal of bacteriology.

[75]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[76]  P. Graham Phthalate ester plasticizers--why and how they are used. , 1973, Environmental health perspectives.

[77]  James L. Johnson,et al.  Phthalate Esters as Environmental Contaminants , 1972, Nature.

[78]  I. G. Young,et al.  Biosynthesis of Ubiquinone in Escherichia coli K-12: Location of Genes Affecting the Metabolism of 3-Octaprenyl-4-hydroxybenzoic Acid and 2-Octaprenylphenol , 1969, Journal of bacteriology.

[79]  H. Tabak,et al.  MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I , 1964, Journal of bacteriology.

[80]  D. W. Ribbons,et al.  Oxidative metabolism of phthalic acid by soil pseudomonads. , 1960, The Biochemical journal.

[81]  B. Schink,et al.  Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant. , 2015, International journal of systematic and evolutionary microbiology.

[82]  A. Stams,et al.  Syntrophism among Prokaryotes , 2013 .

[83]  Oscar Monroy,et al.  Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium , 2011, The ISME Journal.

[84]  E. May,et al.  Microcosm investigations of phthalate behaviour in sewage treatment biofilms. , 2007, The Science of the total environment.

[85]  O. Drzyzga,et al.  Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. , 2001, International journal of systematic and evolutionary microbiology.

[86]  B. Svensson,et al.  Anaerobic degradation of diethyl phthalate and phthalic acid during incubation of municipal solid waste from a biogas digestor. , 1996 .

[87]  N. Ogawa,et al.  Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas putida , 1992 .

[88]  L. Pauling,et al.  Evolutionary Divergence and Convergence in Proteins , 1965 .