Scaling of losses with size and wavelength in nanoplasmonics and metamaterials

We show that, for the resonant metal-dielectric structures with sub-wavelength confinement of light in all three dimensions, the loss cannot be reduced considerably below the loss of the metal itself unless one operates in the far IR and THz regions of the spectrum or below. Such high losses cannot be compensated by introducing gain due to Purcell-induced shortening of recombination times. The only way low loss optical meta-materials can be engineered is with, as yet unknown, low loss materials with negative permittivity.

[1]  K. Vahala,et al.  High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.

[2]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[3]  V. Podolskiy,et al.  Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. , 2007, Optics express.

[4]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[5]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[6]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[7]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[8]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[9]  R. Soref,et al.  Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit , 2007 .

[10]  Philippe Regreny,et al.  Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. , 2010, Nano letters.

[11]  Pieter G. Kik,et al.  SURFACE PLASMON NANOPHOTONICS , 2007 .

[12]  M. Wegener,et al.  Single-slit split-ring resonators at optical frequencies: limits of size scaling. , 2006, Optics letters.

[13]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[14]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[15]  V. Shalaev Optical negative-index metamaterials , 2007 .

[16]  J. Khurgin,et al.  Enhancement of optical properties of nanoscaled objects by metal nanoparticles , 2009 .

[17]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[18]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[19]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[20]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[21]  Jacob B. Khurgin,et al.  In search of the elusive lossless metal , 2010 .

[22]  Shu-Wei Chang,et al.  Fundamental Formulation for Plasmonic Nanolasers , 2009, IEEE Journal of Quantum Electronics.