Neural specialization for hovering in hummingbirds: Hypertrophy of the pretectal nucleus lentiformis mesencephali

Hummingbirds possess an array of morphological and physiological specializations that allow them hover such that they maintain a stable position in space for extended periods. Among birds, this sustained hovering is unique to hummingbirds, but possible neural specializations underlying this behavior have not been investigated. The optokinetic response (OKR) is one of several behaviors that facilitates stabilization. In birds, the OKR is generated by the nucleus of the basal optic root (nBOR) and pretectal nucleus lentiformis mesencephali (LM). Because stabilization during hovering is dependent on the OKR, we predicted that nBOR and LM would be significantly enlarged in hummingbirds. We examined the relative size of nBOR, LM, and other visual nuclei of 37 species of birds from 13 orders, including nine hummingbird species. Also included were three species that hover for short periods of time (transient hoverers; a kingfisher, a kestrel, and a nectarivorous songbird). Our results demonstrate that, relative to brain volume, LM is significantly hypertrophied in hummingbirds compared with other birds. In the transient hoverers, there is a moderate enlargement of the LM, but not to the extent found in the hummingbirds. The same degree of hypertrophy is not, however, present in nBOR or the other visual nuclei measured: nucleus geniculatus lateralis, pars ventralis, and optic tectum. This selective hypertrophy of LM and not other visual nuclei suggests that the direction‐selective optokinetic neurons in LM are critical for sustained hovering flight because of their prominent role in the OKR and gaze stabilization. J. Comp. Neurol. 500:211–221, 2007. © 2006 Wiley‐Liss, Inc.

[1]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[2]  J. Simpson,et al.  The pretectal nuclear complex and the accessory optic system. , 1988, Reviews of oculomotor research.

[3]  J. Wallman,et al.  Functional postnatal changes in avian brain regions responsive to retinal slip: a 2-deoxy-D-glucose study , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  H. Whiting,et al.  Motor development in children : aspects of coordination and control , 1986 .

[5]  H. Maturana,et al.  Color-opponent responses in the avian lateral geniculate: A study in the quail (Coturnix coturnix japonica) , 1982, Brain Research.

[6]  Y. Yom-Tov Sunbirds: A Guide to the Sunbirds, Flowerpeckers, Spiderhunters, and Sugarbirds of the World.ByRobert A Chekeand, Clive F Mann; illustrated by, Richard Allen.New Haven (Connecticut): Yale University Press. $50.00. 384 p; ill.; index. ISBN: 0–300– 08940–6. 2001. , 2002 .

[7]  R. Kern,et al.  Visual position stabilization in the hummingbird hawk moth, Macroglossum stellatarum L. II. Electrophysiological analysis of neurons sensitive to wide-field image motion , 1998, Journal of Comparative Physiology A.

[8]  H. Gioanni,et al.  Single unit activity in the nucleus of the basal optic root (nBOR) during optokinetic, vestibular and visuo-vestibular stimulations in the alert pigeon (Columbia livia) , 2004, Experimental Brain Research.

[9]  K. Fite,et al.  Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia). , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Pellis,et al.  Brain system size and adult–adult play in primates: a comparative analysis of the roles of the non-visual neocortex and the amygdala , 2002, Behavioural Brain Research.

[11]  W. Cowan,et al.  An experimental study of the avian visual system. , 1961, Journal of anatomy.

[12]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[13]  J. Wallman,et al.  Relation of single unit properties to the oculomotor function of the nucleus of the basal optic root (accessory optic system) in chickens , 2004, Experimental Brain Research.

[14]  P. Ebinger Domestication and plasticity of brain organization in mallards (Anas platyrhynchos). , 1995, Brain, behavior and evolution.

[15]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[16]  S P McKee,et al.  Failure of Donders' law during smooth pursuit eye movements. , 1973, Vision research.

[17]  I. Winship,et al.  Zonal organization of the vestibulocerebellum in pigeons (Columba livia): I. Climbing fiber input to the flocculus , 2003, The Journal of comparative neurology.

[18]  M. O’Brien “Posture” , 1979 .

[19]  D. R. Wylie,et al.  Spatiotemporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons. , 2000, Journal of neurophysiology.

[20]  H. Gioanni,et al.  Optokinetic nystagmus in the pigeon (Columba livia) III. Role of the nucleus ectomamillaris (nEM): Interactions in the accessory optic system (AOS) , 2004, Experimental Brain Research.

[21]  Jan Voogd,et al.  Functional and anatomical organization of floccular zones: A preserved feature in vertebrates , 2004, The Journal of comparative neurology.

[22]  M. Ibbotson,et al.  Spatiotemporal tuning of directional neurons in mammalian and avian pretectum: a comparison of physiological properties. , 2001, Journal of neurophysiology.

[23]  Robert Dudley,et al.  The ecological and evolutionary interface of hummingbird flight physiology. , 2002, The Journal of experimental biology.

[24]  B. Frost,et al.  The visual response properties of neurons in the nucleus of the basal optic root of the northern saw-whet owl (Aegolius acadicus). , 1994, Brain, Behavior and Evolution.

[25]  Masao Ito The Cerebellum And Neural Control , 1984 .

[26]  E. Knudsen Subdivisions of the inferior colliculus in the barn owl (Tyto alba) , 1983, The Journal of comparative neurology.

[27]  J. Wallman,et al.  Accessory optic system and pretectum of birds: comparisons with those of other vertebrates. , 1985, Brain, behavior and evolution.

[28]  R. Dudley,et al.  Resolution of a paradox: hummingbird flight at high elevation does not come without a cost. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Holger G. Krapp,et al.  Neural encoding of behaviourally relevant visual-motion information in the fly , 2002, Trends in Neurosciences.

[30]  K. Fite,et al.  Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: theme and variations. , 1985, Brain, behavior and evolution.

[31]  Paul D. Gamlin,et al.  Retinal projections to the pretectum in the pigeon (columba livia) , 1988, The Journal of comparative neurology.

[32]  S. E. Brauth,et al.  Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia) , 2004, Experimental Brain Research.

[33]  S. Pateromichelakis Response properties of units in the lateral geniculate nucleus of the domestic chick (Gallus domesticus) , 1979, Brain Research.

[34]  S. Baird,et al.  The birds of North America , 1974 .

[35]  Nathan A. Crowder,et al.  Fast and slow neurons in the nucleus of the basal optic root in pigeons , 2001, Neuroscience Letters.

[36]  A. Schleicher,et al.  Encephalization in hummingbirds (Trochilidae). , 1991, Brain, Behavior and Evolution.

[37]  W. Crossland,et al.  Topographic projections of the retina and optic tectum upon the ventral lateral geniculate nucleus in the chick , 1979, The Journal of comparative neurology.

[38]  H Gioanni,et al.  Characteristics of slow and fast phases of the optocollic reflex (OCR) in head free pigeons (Columba livia): influence of flight behaviour , 1999, The European journal of neuroscience.

[39]  S. Hunt,et al.  Optokinetic nystagmus and the accessory optic system of pigeon and turtle. , 1979, Brain, behavior and evolution.

[40]  B. J. Frost,et al.  Visual response characteristics of neurons in nucleus of basal optic root of pigeons , 2004, Experimental Brain Research.

[41]  David N. Lee,et al.  Establishing a Frame of Reference for Action , 1986 .

[42]  Andrew N. Iwaniuk,et al.  Interspecific Allometry of the Brain and Brain Regions in Parrots (Psittaciformes): Comparisons with Other Birds and Primates , 2004, Brain, Behavior and Evolution.

[43]  B. J. Frost,et al.  The visual response properties of neurons in the nucleus of the basal optic root of the pigeon: a quantitative analysis , 2004, Experimental Brain Research.

[44]  J. T. Erichsen,et al.  The neural substrate for the pupillary light reflex in the pigeon (Columba livia) , 1984, The Journal of comparative neurology.

[45]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[46]  C. L. Gass,et al.  Hummingbird foraging and the relation between bioenergetics and behaviour. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[47]  B. Frost,et al.  The pigeon optokinetic system: Visual input in extraocular muscle coordinates , 1996, Visual Neuroscience.

[48]  A. Iwaniuk,et al.  Is Cooperative Breeding Associated With Bigger Brains? A Comparative Test in the Corvida (Passeriformes) , 2004 .

[49]  H. Karten,et al.  The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). , 1967, Brain research.

[50]  K. Winker OBTAINING, PRESERVING, AND PREPARING BIRD SPECIMENS , 2000 .

[51]  D. R. Wylie,et al.  Echolocation, vocal learning, auditory localization and the relative size of the avian auditory midbrain nucleus (MLd) , 2006, Behavioural Brain Research.

[52]  J. Ahlquist Phylogeny and classification of birds , 1985 .

[53]  H. Maturana,et al.  Cytoarchitecture of the avian ventral lateral geniculate nucleus , 1987, The Journal of comparative neurology.

[54]  Barrie J. Frost,et al.  The Analysis of Motion in the Visual Systems of Birds , 1994 .

[55]  B. Tobalske,et al.  Aerodynamics of the hovering hummingbird , 2005, Nature.

[56]  D. Varjú,et al.  Visual position stabilization in the hummingbird hawk moth, Macroglossum stellatarum L. I. Behavioural analysis , 1998, Journal of Comparative Physiology A.

[57]  J. Nelson,et al.  Can endocranial volume be used as an estimate of brain size in birds , 2002 .

[58]  Bret W Tobalske,et al.  Take-off mechanics in hummingbirds (Trochilidae) , 2004, Journal of Experimental Biology.

[59]  J. M. Jones,et al.  American kestrel : Falco sparverius , 2005 .

[60]  Blank Rh,et al.  The pretectal nuclear complex and the accessory optic system. , 1988 .

[61]  Barrie J. Frost,et al.  Neural Mechanisms for Detecting Object Motion and Figure-Ground Boundaries, Contrasted with Self-Motion Detecting Systems , 1985 .

[62]  T. Deacon Fallacies of progression in theories of brain-size evolution , 1990, International Journal of Primatology.

[63]  J. Pakan,et al.  Projections of the nucleus lentiformis mesencephali in pigeons (Columba livia): A comparison of the morphology and distribution of neurons with different efferent projections , 2006, The Journal of comparative neurology.

[64]  Joel Cracraft,et al.  Phylogeny and diversification of the largest avian radiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[65]  H. Gioanni,et al.  Optokinetic nystagmus in the pigeon (Columba livia) II. Role of the pretectal nucleus of the accessory optic system (AOS) , 2004, Experimental Brain Research.

[66]  E. Marg THE ACCESSORY OPTIC SYSTEM * , 1964 .

[67]  D. R. Wylie,et al.  The accessory optic system contributes to the spatio-temporal tuning of motion-sensitive pretectal neurons. , 2003, Journal of neurophysiology.

[68]  B. Frost,et al.  Common reference frame for neural coding of translational and rotational optic flow , 1998, Nature.

[69]  D. Cohen,et al.  Projections of the retinorecipient pretectal nuclei in the pigeon (columba livia) , 1988, The Journal of comparative neurology.

[70]  W. Davis,et al.  HANDBOOK OF AUSTRALIAN, NEW ZEALAND, AND ANTARCTIC BIRDS, VOLUME 5: TYRANT-FLYCATCHERS TO CHATS , 2001 .

[71]  S. Hunt,et al.  Projections of the nucleus of the basal optic root in the pigeon: An autoradiographic and horseradish peroxidase study , 1980, The Journal of comparative neurology.

[72]  M. Ibbotson,et al.  Spatiotemporal response properties of direction-selective neurons in the nucleus of the optic tract and dorsal terminal nucleus of the wallaby, Macropus eugenii. , 1994, Journal of neurophysiology.

[73]  D. Bilo,et al.  Wind stimuli control vestibular and optokinetic reflexes in the pigeon , 1978, Naturwissenschaften.

[74]  R.H.S. Carpenter,et al.  Mammalian vestibular physiology , 1980, Nature.

[75]  D. Boire,et al.  Allometric comparison of brain and main brain subdivisions in birds. , 1994, Journal fur Hirnforschung.

[76]  M. Srinivasan,et al.  Visual motor computations in insects. , 2004, Annual review of neuroscience.

[77]  Toru Shimizu,et al.  Visual discrimination performance after lesions of the ventral lateral geniculate nucleus in pigeons (Columba livia) , 1992, Behavioural Brain Research.

[78]  J. Shephard Raptors of the World , 2002 .