Temperature‐Independent Transport in High‐Mobility Dinaphtho‐Thieno‐Thiophene (DNTT) Single Crystal Transistors

The angular and temperature dependence of the field-effect mobility are investigated for p-type DNTT single crystals in a vacuum-gap structure. Temperature-independent transport behavior and weak mobility anisotropy are observed, with the best mobility approaching 10 cm(2) V(-1) s(-1) . Structural characterization and simulation suggest exceptionally high-quality and high-purity crystals.

[1]  W. Xie,et al.  Electrolyte gated single-crystal organic transistors to examine transport in the high carrier density regime , 2013 .

[2]  A. Crosby,et al.  The Intrinsic Mechanical Properties of Rubrene Single Crystals , 2012, Advanced materials.

[3]  Gui Yu,et al.  A stable solution-processed polymer semiconductor with record high-mobility for printed transistors , 2012, Scientific Reports.

[4]  A. Morpurgo,et al.  Band‐Like Electron Transport in Organic Transistors and Implication of the Molecular Structure for Performance Optimization , 2012, Advanced materials.

[5]  V. Podzorov,et al.  The Origin of a 650 nm Photoluminescence Band in Rubrene , 2011, Advanced materials.

[6]  Itaru Osaka,et al.  Thienoacene‐Based Organic Semiconductors , 2011, Advanced materials.

[7]  Alán Aspuru-Guzik,et al.  From computational discovery to experimental characterization of a high hole mobility organic crystal , 2011, Nature communications.

[8]  H. Matsui,et al.  Inkjet printing of single-crystal films , 2011, Nature.

[9]  W. Xie,et al.  Organic Electrical Double Layer Transistors Based on Rubrene Single Crystals: Examining Transport at High Surface Charge Densities above 1013 cm–2 , 2011 .

[10]  Bertram Batlogg,et al.  Gate bias stress in pentacene field-effect-transistors: Charge trapping in the dielectric or semiconductor , 2011, 1106.4636.

[11]  Masakazu Yamagishi,et al.  Patternable Solution‐Crystallized Organic Transistors with High Charge Carrier Mobility , 2011, Advanced materials.

[12]  Hiroki Mori,et al.  Alkylated Dinaphtho[2,3‐b:2′,3′‐f]Thieno[3,2‐b]Thiophenes (Cn‐DNTTs): Organic Semiconductors for High‐Performance Thin‐Film Transistors , 2011, Advanced materials.

[13]  L. Feldman,et al.  Photon‐Assisted Oxygen Diffusion and Oxygen‐Related Traps in Organic Semiconductors , 2011, Advanced materials.

[14]  K. Tsukagoshi,et al.  Solution‐Processable Organic Single Crystals with Bandlike Transport in Field‐Effect Transistors , 2011, Advanced materials.

[15]  Henning Sirringhaus,et al.  Band-like temperature dependence of mobility in a solution-processed organic semiconductor. , 2010, Nature materials.

[16]  P. Ruden,et al.  Carrier localization on surfaces of organic semiconductors gated with electrolytes. , 2010, Physical review letters.

[17]  Y. Nakayama,et al.  Highest-occupied-molecular-orbital band dispersion of rubrene single crystals as observed by angle-resolved ultraviolet photoelectron spectroscopy. , 2010, Physical review letters.

[18]  K. Takimiya,et al.  Free-electron-like Hall effect in high-mobility organic thin-film transistors , 2010 .

[19]  Bertram Batlogg,et al.  Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals , 2010, 1002.1611.

[20]  Alán Aspuru-Guzik,et al.  Theoretical Characterization of the Air-Stable, High-Mobility Dinaphtho[2,3-b:2′3′-f]thieno[3,2-b]-thiophene Organic Semiconductor , 2010, The Journal of Physical Chemistry C.

[21]  Bertram Batlogg,et al.  Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods , 2009, 0912.4106.

[22]  A. Morpurgo,et al.  Quantitative analysis of density-dependent transport in tetramethyltetraselenafulvalene single-crystal transistors: Intrinsic properties and trapping , 2009 .

[23]  K. Takimiya,et al.  High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors , 2009 .

[24]  K. Takimiya,et al.  Moderately anisotropic field-effect mobility in dinaphtho[2,3-b:2′,3′-f]thiopheno[3,2-b]thiophenes single-crystal transistors , 2009 .

[25]  Gilles Horowitz,et al.  High‐Performance Organic Field‐Effect Transistors , 2009 .

[26]  C. Reese,et al.  High‐Resolution Measurement of the Anisotropy of Charge Transport in Single Crystals , 2007 .

[27]  Kazuo Takimiya,et al.  Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. , 2007, Journal of the American Chemical Society.

[28]  D. Gundlach,et al.  Density of bulk trap states in organic semiconductor crystals: Discrete levels induced by oxygen in rubrene , 2007, 0704.3218.

[29]  J. Rogers,et al.  Tetracene air-gap single-crystal field-effect transistors , 2007 .

[30]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[31]  Kazuo Takimiya,et al.  Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors , 2007 .

[32]  D. Lang,et al.  Oxygen-related band gap state in single crystal rubrene. , 2006, Physical review letters.

[33]  Michael E. Gershenson,et al.  Colloquium : Electronic transport in single-crystal organic transistors , 2006 .

[34]  S. Roth,et al.  Anisotropic field effect mobility in single crystal pentacene , 2006 .

[35]  C. Kloc,et al.  Dislocations and grain boundaries in semiconducting rubrene single-crystals , 2006 .

[36]  Alessandro Troisi,et al.  Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. , 2006, Physical review letters.

[37]  J. Rogers,et al.  Hall effect in the accumulation layers on the surface of organic semiconductors. , 2005, Physical review letters.

[38]  Michael F Toney,et al.  p-Channel organic semiconductors based on hybrid acene-thiophene molecules for thin-film transistor applications. , 2005, Journal of the American Chemical Society.

[39]  J. Rogers,et al.  High‐Performance n‐ and p‐Type Single‐Crystal Organic Transistors with Free‐Space Gate Dielectrics , 2004 .

[40]  A. Morpurgo,et al.  Organic single-crystal field-effect transistors , 2004, cond-mat/0404100.

[41]  J. Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[42]  K. Pernstich,et al.  Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals , 2003, cond-mat/0306206.

[43]  S. Sysoev,et al.  Single-crystal organic field effect transistors with the hole mobility ∼8 cm2/V s , 2003, cond-mat/0306192.

[44]  Thomas N. Jackson,et al.  Temperature-independent transport in high-mobility pentacene transistors , 1998 .

[45]  Theo Siegrist,et al.  Physical vapor growth of organic semiconductors , 1998 .

[46]  A. Heeger,et al.  Electrical conductivity of tetrathiofulvalinium tetracyanoquinodimethan (TTF) (TCNQ) , 1974 .

[47]  D. Gundlach,et al.  Arbitrary Density of States in an Organic Thin-Film Field-Effect Transistor Model and Application to Pentacene Devices , 2007, IEEE Transactions on Electron Devices.