Intelligent approaches in locomotion

In this paper we review more than 50 publications and try to not only give a snap shot of the current state of the art research in the area, but also to critically analyse and compare different methodologies used in this research field. Among the investigated intelligent approaches for solving locomotion problems are Neural Networks, Hidden Markov models, Rule Based and Fuzzy Logic systems, as well as Analytical concepts. We try to compare those methods based on the quality of the produced solutions in terms of time, stability, correctness and the expense and cost for achieving them. At the end of each section we list the advantages and disadvantages of the reviewed methods and scrutinise them considering the complexity of the approaches, their applicability to the investigated locomotion tasks and the constraints of the produced solutions.

[1]  Chong-Ho Choi,et al.  An effective trajectory generation method for bipedal walking , 2007, Robotics Auton. Syst..

[2]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[3]  S. Grillner,et al.  Neural networks that co-ordinate locomotion and body orientation in lamprey , 1995, Trends in Neurosciences.

[4]  S. Grillner Locomotion in vertebrates: central mechanisms and reflex interaction. , 1975, Physiological reviews.

[5]  Kalyanmoy Deb,et al.  Optimal path and gait generations simultaneously of a six-legged robot using a GA-fuzzy approach , 2002, Robotics Auton. Syst..

[6]  Bernard Espiau,et al.  Online generation of cyclic leg trajectories synchronized with sensor measurement , 2008, Robotics Auton. Syst..

[7]  Yamakita Masaki,et al.  Design of a novel central pattern generator and the hebbian motion learning , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[8]  Leonard Barolli,et al.  Application of Genetic Algorithms for biped robot gait synthesis optimization during walking and going up-stairs , 2001, Adv. Robotics.

[9]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[10]  Frank Kirchner,et al.  Biomimetic walking robot SCORPION: Control and modeling , 2002, Robotics Auton. Syst..

[11]  Phil Husbands,et al.  Evolution of central pattern generators for bipedal walking in a real-time physics environment , 2002, IEEE Trans. Evol. Comput..

[12]  H. C. Wood,et al.  A movement pattern generator model using artificial neural networks , 1992, IEEE Transactions on Biomedical Engineering.

[13]  John Hallam,et al.  Evolving Swimming Controllers for a Simulated Lamprey with Inspiration from Neurobiology , 1999, Adapt. Behav..

[14]  Tetsuya Asai,et al.  An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion , 2003, IEEE Trans. Neural Networks.

[15]  Karsten Berns,et al.  A learning architecture based on reinforcement learning for adaptive control of the walking machine LAURON , 1995, Robotics Auton. Syst..

[16]  Tim D. Barfoot,et al.  Experiments in learning distributed control for a hexapod robot , 2006, Robotics Auton. Syst..

[17]  A.J. Ijspeert,et al.  Passive compliant quadruped robot using Central Pattern Generators for locomotion control , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[18]  Gabriel Buche,et al.  Control Strategy for the Robust Dynamic Walk of a Biped Robot , 2006, Int. J. Robotics Res..

[19]  Prabir K. Pal,et al.  Gait Optimization through Search , 2000, Int. J. Robotics Res..

[20]  Kazuo Ishii,et al.  Behavior generation of bipedal robot using central pattern generator(CPG) (1st report: CPG parameters searching method by genetic algorithm) , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[21]  Auke Jan Ijspeert,et al.  Development of Adaptive Modular Active Leg (AMAL) using bipedal robotics technology , 2009, Robotics Auton. Syst..

[22]  Karsten Berns,et al.  Neural networks for the control of a six-legged walking machine , 1995, Robotics Auton. Syst..

[23]  Guy Bessonnet,et al.  A Parametric Optimization Approach to Walking Pattern Synthesis , 2005, Int. J. Robotics Res..

[24]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[25]  Dilip Kumar Pratihar,et al.  On-line stable gait generation of a two-legged robot using a genetic-fuzzy system , 2005, Robotics Auton. Syst..

[26]  Jun Xiao,et al.  Research on gait planning of artificial leg based on central pattern generator , 2008, 2008 Chinese Control and Decision Conference.

[27]  Ralph Etienne-Cummings,et al.  Configuring of Spiking Central Pattern Generator Networks for Bipedal Walking Using Genetic Algorthms , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[28]  James P. Ostrowski,et al.  Experimental Verification of Open-loop Control for an Underwater Eel-like Robot , 2002, Int. J. Robotics Res..

[29]  Mark J. Damborg,et al.  An adaptive controller for a one-legged mobile robot , 1989, IEEE Trans. Robotics Autom..

[30]  Oliver Höhn,et al.  Probabilistic Balance Monitoring for Bipedal Robots , 2009, Int. J. Robotics Res..

[31]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[32]  Jun Morimoto,et al.  Learning CPG-based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[33]  Hirochika Inoue,et al.  Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[34]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[35]  Victor B. Zordan,et al.  Dynamic response for motion capture animation , 2005, SIGGRAPH '05.

[36]  H. Hemami,et al.  Modeling of a Neural Pattern Generator with Coupled nonlinear Oscillators , 1987, IEEE Transactions on Biomedical Engineering.

[37]  M. Dimitrijevic,et al.  Evidence for a Spinal Central Pattern Generator in Humans a , 1998, Annals of the New York Academy of Sciences.

[38]  S. Grossberg,et al.  Neural control of interlimb oscillations , 1997, Biological Cybernetics.

[39]  J. Morimoto,et al.  A Biologically Inspired Biped Locomotion Strategy for Humanoid Robots: Modulation of Sinusoidal Patterns by a Coupled Oscillator Model , 2008, IEEE Transactions on Robotics.

[40]  Ju-Jang Lee,et al.  Gait adaptation method of biped robot for various terrains using central pattern generator (CPG) and learning mechanism , 2007, 2007 International Conference on Control, Automation and Systems.

[41]  Judy A. Franklin,et al.  Biped dynamic walking using reinforcement learning , 1997, Robotics Auton. Syst..

[42]  Changjiu Zhou,et al.  Dynamic balance of a biped robot using fuzzy reinforcement learning agents , 2003, Fuzzy Sets Syst..

[43]  Farhan Gandhi,et al.  Experimentally Verified Optimal Serpentine Gait and Hyperredundancy of a Rigid-Link Snake Robot , 2008, IEEE Transactions on Robotics.

[44]  Benjamin Schrauwen,et al.  Design of a Central Pattern Generator Using Reservoir Computing for Learning Human Motion , 2009, 2009 Advanced Technologies for Enhanced Quality of Life.

[45]  Oskar von Stryk,et al.  International Journal of Robotics Research , 2022 .

[46]  Ludovic Righetti,et al.  Programmable central pattern generators: an application to biped locomotion control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[47]  Randall D. Beer,et al.  Evolving Dynamical Neural Networks for Adaptive Behavior , 1992, Adapt. Behav..

[48]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[49]  Da Ruan,et al.  Integration of linguistic and numerical information for biped control , 1999, Robotics Auton. Syst..

[50]  Y. Yam,et al.  Construction of Central Pattern Generator Using Piecewise Affine Systems , 2007, 2007 IEEE International Conference on Control and Automation.

[51]  Dingguo Zhang,et al.  On Central Pattern Generator of Biological Motor System , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[52]  Dilip Kumar Pratihar,et al.  Dynamically balanced optimal gaits of a ditch-crossing biped robot , 2010, Robotics Auton. Syst..

[53]  Masahiro Fujita,et al.  Autonomous evolution of dynamic gaits with two quadruped robots , 2005, IEEE Transactions on Robotics.

[54]  Florentin Wörgötter,et al.  Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning , 2006, Int. J. Robotics Res..

[55]  Yoshihiko Nakamura,et al.  Embodied Symbol Emergence Based on Mimesis Theory , 2004, Int. J. Robotics Res..

[56]  D. Lachat,et al.  BoxyBot: a swimming and crawling fish robot controlled by a central pattern generator , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..