Frugal Colouring of Graphs

A k-frugal colouring of a graph G is a proper colouring of the vertices of G such that no colour appears more than k times in the neighbourhood of a vertex. This type of colouring was introduced by Hind, Molloy and Reed in 1997. In this paper, we study the frugal chromatic number of planar graphs, planar graphs with large girth, and outerplanar graphs, and relate this parameter with several well-studied colourings, such as colouring of the square, cyclic colouring, and L(p,q)-labelling. We also study frugal edge-colourings of multigraphs.

[1]  Colin McDiarmid,et al.  List colouring squares of planar graphs (extended abstract) , 2007 .

[2]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[3]  Bruce A. Reed,et al.  List Colouring Squares of Planar Graphs , 2007, Electron. Notes Discret. Math..

[4]  Ko-Wei Lih,et al.  Labeling Planar Graphs with Conditions on Girth and Distance Two , 2004, SIAM J. Discret. Math..

[5]  Michael Molloy,et al.  Total coloring with Δ + poly (log Δ) colors , 1999 .

[6]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[7]  Mohammad R. Salavatipour,et al.  A bound on the chromatic number of the square of a planar graph , 2005, J. Comb. Theory, Ser. B.

[8]  Louis Esperet,et al.  Oriented colorings of 2-outerplanar graphs , 2007, Inf. Process. Lett..

[9]  J. Petersen Die Theorie der regulären graphs , 1891 .

[10]  Alexandr V. Kostochka,et al.  List Edge and List Total Colourings of Multigraphs , 1997, J. Comb. Theory B.

[11]  Jan van den Heuvel,et al.  Coloring the square of a planar graph , 2003 .

[12]  Yue Zhao,et al.  A New Bound on the Cyclic Chromatic Number , 2001, J. Comb. Theory, Ser. B.

[13]  Daniel Král,et al.  Coloring squares of planar graphs with no short cycles , 2005 .

[14]  Tomaz Slivnik,et al.  Aspects of edge list-colourings , 2001, Discret. Math..

[15]  Bruce A. Reed,et al.  Colouring a graph frugally , 1997, Comb..

[16]  G. Wegner Graphs with given diameter and a coloring problem , 1977 .

[17]  Ko-Wei Lih,et al.  COLORING THE SQUARE OF AN OUTERPLANAR GRAPH , 2006 .

[18]  Fred Galvin,et al.  The List Chromatic Index of a Bipartite Multigraph , 1995, J. Comb. Theory B.

[19]  Frank Harary,et al.  Graph Theory , 2016 .