Security of the decoy state method for quantum key distribution

A.S. Trushechkin, 2 E.O. Kiktenko, 2, 3, 4 D.A. Kronberg, 3, 4 and A.K. Fedorov 4 Steklov Mathematical Institute, Russian Academy of Sciences, Moscow 119991, Russian Federation Department of Mathematics and NTI Center for Quantum Communications, National University of Science and Technology MISiS, Moscow 119049, Russia Russian Quantum Center, Skolkovo, Moscow 143025, Russia Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia (Dated: January 26, 2021)

[1]  E. O. Kiktenko,et al.  Practical issues in decoy-state quantum key distribution based on the central limit theorem , 2017, ArXiv.

[2]  E. O. Kiktenko,et al.  Quantum key distribution protocol with pseudorandom bases , 2017, ArXiv.

[3]  Gisin,et al.  Quantum cryptography with coherent states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[5]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[6]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[7]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[8]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[9]  Miloslav Dusek,et al.  Unambiguous state discrimination in quantum cryptography with weak coherent states , 2000 .

[10]  N. Gisin,et al.  Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses , 2001, quant-ph/0102062.

[11]  A. K. Fedorov,et al.  Analysis of coherent quantum cryptography protocol vulnerability to an active beam-splitting attack , 2017 .

[12]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[13]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[14]  Alexander Pechen,et al.  Active Beam Splitting Attack Applied to Differential Phase Shift Quantum Key Distribution Protocol , 2018, p-Adic Numbers, Ultrametric Analysis and Applications.

[15]  E. O. Kiktenko,et al.  Symmetric Blind Information Reconciliation and Hash-function-based Verification for Quantum Key Distribution , 2017, Lobachevskii Journal of Mathematics.

[16]  염흥렬,et al.  [서평]「Applied Cryptography」 , 1997 .

[17]  Renato Renner,et al.  Cryptographic security of quantum key distribution , 2014, ArXiv.

[18]  S. N. Molotkov CONFERENCES AND SYMPOSIA: Quantum cryptography and V A Kotel'nikov's one-time key and sampling theorems , 2006 .

[19]  Marco Tomamichel,et al.  A largely self-contained and complete security proof for quantum key distribution , 2015, 1506.08458.

[20]  A. V. Duplinskiy,et al.  Quantum-Secured Data Transmission in Urban Fiber-Optics Communication Lines , 2017, Journal of Russian Laser Research.

[21]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[22]  A S Trushechkin On the operational meaning and practical aspects of using the security parameter in quantum key distribution , 2020 .

[23]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[24]  E. O. Kiktenko,et al.  Symmetric blind information reconciliation for quantum key distribution , 2016, ArXiv.

[25]  S. N. Molotkov,et al.  Decoy state method for quantum cryptography based on phase coding into faint laser pulses , 2017 .

[26]  Xiongfeng Ma,et al.  Practical issues in quantum-key-distribution postprocessing , 2009, 0910.0312.

[27]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[28]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[30]  Alán Aspuru-Guzik,et al.  Variational Quantum Factoring , 2018, QTOP@NetSys.

[31]  D. A. Kronberg New methods of error correction in quantum cryptography using low-density parity-check codes , 2017 .

[32]  Qiaoyan Wen,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2012 .

[33]  Xiongfeng Ma,et al.  Improved key-rate bounds for practical decoy-state quantum-key-distribution systems , 2016, 1611.02524.

[34]  S. N. Molotkov,et al.  Are There Enough Decoy States to Ensure Key Secrecy in Quantum Cryptography? , 2019 .

[35]  Kamil' A Valiev,et al.  Quantum computers and quantum computations , 2005 .

[36]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[37]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[38]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[39]  E. O. Kiktenko,et al.  Lightweight Authentication for Quantum Key Distribution , 2019, IEEE Transactions on Information Theory.

[40]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[41]  Michele Mosca,et al.  Cybersecurity in an Era with Quantum Computers: Will We Be Ready? , 2017, IEEE Security & Privacy.

[42]  S. N. Molotkov,et al.  Erratum to: Are There Enough Decoy States to Ensure Key Secrecy in Quantum Cryptography? , 2019 .

[43]  Dominic Mayers,et al.  Quantum Key Distribution and String Oblivious Transfer in Noisy Channels , 1996, CRYPTO.

[44]  E. O. Kiktenko,et al.  Post-processing procedure for industrial quantum key distribution systems , 2016, ArXiv.

[45]  Bing Qi,et al.  Practical challenges in quantum key distribution , 2016, npj Quantum Information.

[46]  A. S. Trushechkin,et al.  Security of quantum key distribution with detection-efficiency mismatch in the single-photon case: Tight bounds , 2018, Physical Review A.

[47]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[48]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[49]  Claudia Linnhoff-Popien,et al.  Quantum Technology and Optimization Problems , 2019, Lecture Notes in Computer Science.

[50]  Masato Koashi,et al.  Simple security proof of quantum key distribution based on complementarity , 2009 .

[51]  A. K. Fedorov,et al.  Quantum soft filtering for the improved security analysis of the coherent one-way QKD protocol , 2019 .

[52]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[53]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[54]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[55]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[56]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[57]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.