Earth's field magnetometry

In the last decade a vast expansion has been experienced in the use of observations and measurements of the Earth's magnetic field. The type and quality of the observations required by newly developed geomagnetic research interests, in themselves partly stimulated by the possibilities offered by new types of magnetometers, greatly increased the amount of effort which has been applied to further developing the instruments and devising new ones. The demand arose from two main sources. The first was the evolution, with the advent of satellite experimentation, of magnetospheric physics, and the second derived from the eventual acceptance of reversed magnetization in rocks as being due to reversal of the Earth's field itself. This paved the way to the chronological interpretation of alternating positive and negative anomalies, and stimulated vigorous research into ocean floor spreading and crustal movements. It is not possible in a single review article to describe all the variants of sensors and detection systems which have been developed to meet the very wide range of observations currently required, for example for survey by land, sea and air, measurement of minute magnetization of rock samples in paleo and archeo-magnetism and for rocket, satellite and space probe applications. Recent excellent reviews of the objectives of including magnetometers in spacecraft experimentation, of the instruments used and of the special techniques which have been developed to overcome the operational and interpretational difficulties of that branch of geomagnetism are given by Heppner (1967) and Ness (1970). The subject of aeromagnetic surveying is discussed in depth by Hood and Ward (1969). This review is, therefore, limited to the generalities of the devices currently in use for ground-based magnetic measurements. The operating principles of each detection system are explained in simple physical terms. Any important developments or extensions of basic technique which are of particular significance are discussed, together with their essential characteristics and limitations. Details of electronic detection systems are not described except where appropriate reference cannot be included. The instruments described are in the following main classifications: magnetometers using nuclear and atomic resonance, saturable cores, suspended magnets, induction coils and superconducting devices. In addition, the magnetometer systems which use artificially created fields to allow vector measurements to be made by total field sensors are described. Their operation performance is assessed and the use of bias and backing-off fields are discussed. The use of the proton gyromagnetic ratio as the absolute standard of geomagnetic field measurement is summarized. There follows a discussion of the requirement for routine ground-based geomagnetic data to be supplied to the scientific community in digital form for direct machine read-in, and some speculation about practicable automatically recording observatory systems. This review was completed in April 1972.

[1]  XXXIII. Magnetic field of circular currents , 1921 .

[2]  G. Fanselau,et al.  Die Erzeugung weitgehend homogener Magnetfelder durch Kreisströme , 1929 .

[3]  Tabellen zur Berechnung des Magnetfeldes bei symmetrischer Spulenanordnung , 1933 .

[4]  W. Braunbek,et al.  Die Erzeugung weitgehend homogener Magnetfelder durch Kreisströme , 1934 .

[5]  L. W. Mckeehan,et al.  Combinations of Circular Currents for Producing Uniform Magnetic Fields , 1936 .

[6]  G. Herzberg Atomic Spectra and Atomic Structure , 1937 .

[7]  S. Millman,et al.  The Molecular Beam Magnetic Resonance Method. The Radiofrequency Spectra of Atoms and Molecules , 1946 .

[8]  E. Purcell,et al.  Relaxation Effects in Nuclear Magnetic Resonance Absorption , 1948 .

[9]  Alfred Kastler,et al.  Quelques suggestions concernant la production optique et la détection optique d'une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l'expérience de Stern et Gerlach et à la résonance magnétique , 1950 .

[10]  A. Overhauser,et al.  Paramagnetic Relaxation in Metals , 1953 .

[11]  Norman F. Ramsey,et al.  Use of Rotating Coordinates in Magnetic Resonance Problems , 1954 .

[12]  A. Bloom,et al.  Optical Detection of Magnetic Resonance in Alkali Metal Vapor , 1957 .

[13]  H. Dehmelt Modulation of a Light Beam by Precessing Absorbing Atoms , 1957 .

[14]  P. H. Serson AN ELECTRICAL RECORDING MAGNETOMETER , 1957 .

[15]  H. Dehmelt,et al.  Slow Spin Relaxation of Optically Polarized Sodium Atoms , 1957 .

[16]  P. D. Francis,et al.  A nuclear magnetometer , 1958 .

[17]  P. Bender,et al.  Measurement of the Earth's magnetic field with a rubidium vapor magnetometer , 1958 .

[18]  R. L. Driscoll,et al.  A Free Precession Determination of the Proton Gyromagnetic Ratio , 1958 .

[19]  J. H. Nelson A new absolute instrument: the proton vector magnetometer , 1958 .

[20]  R V Jones,et al.  Recording optical lever , 1959 .

[21]  P. Franken,et al.  Optical Pumping of Helium in the S 1 3 Metastable State , 1960 .

[22]  L. Hurwitz,et al.  Proton vector magnetometer , 1960 .

[23]  L. Alldredge A proposed automatic standard magnetic observatory , 1960 .

[24]  J. Rice,et al.  A metastable helium magnetometer for observing small geomagnetic fluctuations , 1961 .

[25]  A. Bloom,et al.  Alkali Metal Vapor Spectral Lamps , 1961 .

[26]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[27]  A semiautomatic magnetogram reader , 1962 .

[28]  L. Parsons,et al.  Rubidium vapour magnetometer , 1962 .

[29]  A. Bloom Principles of operation of the rubidium vapor magnetometer , 1962 .

[30]  William A. Geyger,et al.  New Type of Flux‐Gate Magnetometer , 1962 .

[31]  Robert E. Slocum,et al.  Low Field Helium Magnetometer for Space Applications , 1963 .

[32]  Philip W. Anderson,et al.  PROBABLE OBSERVATION OF THE JOSEPHSON SUPERCONDUCTING TUNNELING EFFECT , 1963 .

[33]  J. Rowell,et al.  Magnetic Field Dependence of the Josephson Tunnel Current , 1963 .

[34]  W. F. Stuart,et al.  A self-oscillating rubidium vapour magnetometer for geomagnetic measurements , 1964 .

[35]  M. Siebert Geomagnetic pulsations with latitude-dependent periods and their relation to the structure of the magnetosphere , 1964 .

[36]  Curious behaviour of a proton magnetometer , 1964 .

[37]  L. Alldredge,et al.  An automatic standard magnetic observatory , 1964 .

[38]  R. H. Lundsten,et al.  Factors affecting the sensitivity of gamma-level ring-core magnetometers , 1965 .

[39]  LE MAGNETOMETRE AEROPORTE MP 121 SUD‐AVIATION , 1965 .

[40]  R. H. Frater Synchronous Integrator and Demodulator , 1965 .

[41]  S. H. Hall,et al.  Rocket measurements of the geomagnetic field above Woomera, south Australia , 1965 .

[42]  W. F. Stuart,et al.  A counting system for use with the rubidium magnetometer , 1966 .

[43]  An Investigation of Micropulsations at Middle Latitudes , 1966 .

[44]  Lock-On Magnetometer Utilizing a Superconclucting Sensor , 1966 .

[45]  Jim Everett,et al.  Spherical coils for uniform magnetic fields , 1966 .

[46]  T. Herron Phase characteristics of geomagnetic micropulsations , 1966 .

[47]  R. Novick,et al.  The optically pumped rubidium maser , 1966 .

[48]  Stray field modulation effects in the rubidium magnetometer , 1967 .

[49]  Noise-Cancelling Sensor for Proton Magnetometer , 1967 .

[50]  S. Marshall,et al.  An analytic model for the fluxgate magnetometer , 1967 .

[51]  D. Gough,et al.  A Portable Three-Component Magnetic Variometer , 1967 .

[52]  W. H. Farthing,et al.  Rubidium Vapor Magnetometer for Near Earth Orbiting Spacecraft , 1967 .

[53]  J. Filloux AN OCEAN BOTTOM, D COMPONENT MAGNETOMETER , 1967 .

[54]  W. Goree,et al.  Some Techniques for Sensitive Magnetic Measurements Using Superconducting Circuits and Magnetic Shields , 1967 .

[55]  A. Warnick,et al.  Digital‐Analog Magnetometer Utilizing Superconducting Sensor , 1967 .

[56]  D. Gordon,et al.  A fluxgate sensor of high stability for low field magnetometry , 1968 .

[57]  Long-Term Stability of Self-Oscillating Rubidium Magnetometers , 1968 .

[58]  D. Shernoff Mercury Lamp for Optical Pumping , 1969 .

[59]  Norman F. Ness,et al.  Magnetometers for space research , 1970 .

[60]  F. Primdahl The fluxgate mechanism, part I: The gating curves of parallel and orthogonal fluxgates , 1970 .

[61]  D. Gordon,et al.  Low field magnetometer sensor of high stability , 1970 .

[62]  W. F. Stuart,et al.  Stability and resolution of a rubidium magnetometer , 1970 .

[63]  A. Kozlov,et al.  MAGNETOMETERS FOR SPACE MEASUREMENTS , 1970 .

[64]  B. Ledley Magnetometers for space measurements over a wide range of field intensities , 1970 .

[65]  Contribution à l'étude des capteurs magnétiques à induction pour la prospection magnéto-tellurique étude de la sensibilité et améliorations , 1970 .

[66]  W. Goree Review of superconducting magnetometers and cryogenic refrigeration techniques , 1970 .

[67]  Modulated inductance magnetometers , 1970 .

[68]  J. Goodkind,et al.  The Superconducting Magnetic Flux Detector , 1970 .

[69]  F. Primdahl,et al.  Temperature compensation of fluxgate magnetometers , 1970 .

[70]  M. Nisenoff Superconducting magnetometers with sensitivities approaching 10 -10 gauss , 1970 .

[71]  W. F. Stuart,et al.  An analysis of micropulsation spectra (Pc) obtained from the U.E. observatories , 1971 .

[72]  R. Slocum,et al.  Self‐Oscillating Magnetometer Utilizing Optically Pumped 4He , 1971 .

[73]  The manufacture of alkali vapour cells for optical pumping experiments , 1971 .

[74]  M. Usher,et al.  A vector rubidium magnetometer , 1972 .

[75]  W. F. Stuart,et al.  The magnetic observatory system under test by the Institute of Geological Sciences (UK) , 1972 .