FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments

The ultimate goal of any genome-scale experiment is to provide a functional interpretation of the data, relating the available information with the hypotheses that originated the experiment. Thus, functional profiling methods have become essential in diverse scenarios such as microarray experiments, proteomics, etc. We present the FatiGO+, a web-based tool for the functional profiling of genome-scale experiments, specially oriented to the interpretation of microarray experiments. In addition to different functional annotations (gene ontology, KEGG pathways, Interpro motifs, Swissprot keywords and text-mining based bioentities related to diseases and chemical compounds) FatiGO+ includes, as a novelty, regulatory and structural information. The regulatory information used includes predictions of targets for distinct regulatory elements (obtained from the Transfac and CisRed databases). Additionally FatiGO+ uses predictions of target motifs of miRNA to infer which of these can be activated or deactivated in the sample of genes studied. Finally, properties of gene products related to their relative location and connections in the interactome have also been used. Also, enrichment of any of these functional terms can be directly analysed on chromosomal coordinates. FatiGO+ can be found at: http://www.fatigoplus.org and within the Babelomics environment http://www.babelomics.org

[1]  J. Dopazo Functional interpretation of microarray experiments. , 2006, Omics : a journal of integrative biology.

[2]  Susmita Datta,et al.  Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes , 2006, BMC Bioinformatics.

[3]  Joaquín Dopazo,et al.  BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments , 2006, Nucleic Acids Res..

[4]  Joaquín Dopazo,et al.  Next station in microarray data analysis: GEPAS , 2006, Nucleic Acids Res..

[5]  Baldomero Oliva,et al.  PIANA: protein interactions and network analysis , 2006, Bioinform..

[6]  E. Ukkonen,et al.  Genome-wide Prediction of Mammalian Enhancers Based on Analysis of Transcription-Factor Binding Affinity , 2006, Cell.

[7]  K. S. Deshpande,et al.  Human protein reference database—2006 update , 2005, Nucleic Acids Res..

[8]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[9]  Obi L. Griffith,et al.  cisRED: a database system for genome-scale computational discovery of regulatory elements , 2005, Nucleic Acids Res..

[10]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt): an expanding universe of protein information , 2005, Nucleic Acids Res..

[11]  Dmitrij Frishman,et al.  MIPS: analysis and annotation of proteins from whole genomes in 2005 , 2006, Nucleic Acids Res..

[12]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[13]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[14]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[15]  Baldomero Oliva,et al.  Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships , 2005, Bioinform..

[16]  Joaquín Dopazo,et al.  Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information , 2005, Bioinform..

[17]  A. Valencia,et al.  Text-mining and information-retrieval services for molecular biology , 2005, Genome Biology.

[18]  Stanley N Cohen,et al.  Effects of threshold choice on biological conclusions reached during analysis of gene expression by DNA microarrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Joaquín Dopazo,et al.  Ontologies and Functional Genomics , 2005, Data Analysis and Visualization in Genomics and Proteomics.

[20]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[21]  D. Pinkel,et al.  Array comparative genomic hybridization and its applications in cancer , 2005, Nature Genetics.

[22]  Joaquín Dopazo,et al.  Data Analysis and Visualization in Genomics and Proteomics , 2005 .

[23]  Ronnie Driver,et al.  Biostatistics: a Methodology for the Health Sciences , 2005 .

[24]  Cathy H. Wu,et al.  InterPro, progress and status in 2005 , 2004, Nucleic Acids Res..

[25]  Robert Gentleman,et al.  Network structures and algorithms in Bioconductor , 2005, Bioinform..

[26]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[27]  E. Kunkel Systems biology in drug discovery , 2004, Nature Biotechnology.

[28]  Joaquín Dopazo,et al.  FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..

[29]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[30]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[31]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[32]  Douglas A. Hosack,et al.  Identifying biological themes within lists of genes with EASE , 2003, Genome Biology.

[33]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[34]  M. Hofker Faculty Opinions recommendation of PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. , 2003 .

[35]  Joaquín Dopazo,et al.  GEPAS: a web-based resource for microarray gene expression data analysis , 2003, Nucleic Acids Res..

[36]  Ian M. Donaldson,et al.  BIND: the Biomolecular Interaction Network Database , 2001, Nucleic Acids Res..

[37]  P. Khatri,et al.  Global functional profiling of gene expression. , 2003, Genomics.

[38]  May D. Wang,et al.  GoMiner: a resource for biological interpretation of genomic and proteomic data , 2003, Genome Biology.

[39]  P. Khatri,et al.  Profiling gene expression using onto-express. , 2002, Genomics.

[40]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[41]  Xin Chen,et al.  TRANSFAC: an integrated system for gene expression regulation , 2000, Nucleic Acids Res..

[42]  Miguel A. Andrade-Navarro,et al.  Automatic extraction of keywords from scientific text: application to the knowledge domain of protein families , 1998, Bioinform..

[43]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .