SurvNAM: The machine learning survival model explanation

[1]  Peter Tiňo,et al.  A Survey on Neural Network Interpretability , 2020, IEEE Transactions on Emerging Topics in Computational Intelligence.

[2]  Andrea Vedaldi,et al.  Explanations for Attributing Deep Neural Network Predictions , 2019, Explainable AI.

[3]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[4]  Artur S. d'Avila Garcez,et al.  Measurable Counterfactual Local Explanations for Any Classifier , 2019, ECAI.

[5]  F. Harrell,et al.  Evaluating the yield of medical tests. , 1982, JAMA.

[6]  Max Welling,et al.  Attention-based Deep Multiple Instance Learning , 2018, ICML.

[7]  J. Lafferty,et al.  Sparse additive models , 2007, 0711.4555.

[8]  Tuo Zhao,et al.  Towards Understanding the Importance of Shortcut Connections in Residual Networks , 2019, NeurIPS.

[9]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[10]  Insuk Sohn,et al.  Analysis of Survival Data with Group Lasso , 2012, Commun. Stat. Simul. Comput..

[11]  Nader Ebrahimi,et al.  A semi-parametric generalization of the Cox proportional hazards regression model: Inference and applications , 2011, Comput. Stat. Data Anal..

[12]  Lev V. Utkin,et al.  SurvLIME: A method for explaining machine learning survival models , 2020, Knowl. Based Syst..

[13]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[14]  Sabine Van Huffel,et al.  Support vector methods for survival analysis: a comparison between ranking and regression approaches , 2011, Artif. Intell. Medicine.

[15]  Mark A. Neerincx,et al.  Contrastive Explanations with Local Foil Trees , 2018, ICML 2018.

[16]  Carlos Guestrin,et al.  Anchors: High-Precision Model-Agnostic Explanations , 2018, AAAI.

[17]  Amina Adadi,et al.  Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) , 2018, IEEE Access.

[18]  C. Rudin,et al.  Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges , 2021, Statistics Surveys.

[19]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Lev V. Utkin,et al.  Interpretable Machine Learning with an Ensemble of Gradient Boosting Machines , 2020, Knowl. Based Syst..

[21]  Adler J. Perotte,et al.  Deep Survival Analysis , 2016, MLHC.

[22]  Xia Hu,et al.  Techniques for interpretable machine learning , 2018, Commun. ACM.

[23]  Andreas Ziegler,et al.  Random forests for survival analysis using maximally selected rank statistics , 2016, ArXiv.

[24]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[25]  D Faraggi,et al.  A neural network model for survival data. , 1995, Statistics in medicine.

[26]  Jaime S. Cardoso,et al.  Machine Learning Interpretability: A Survey on Methods and Metrics , 2019, Electronics.

[27]  Hong Wang,et al.  Random survival forest with space extensions for censored data , 2017, Artif. Intell. Medicine.

[28]  Jon Arni Steingrimsson,et al.  Deep learning for survival outcomes , 2019, Statistics in medicine.

[29]  Minh N. Vu,et al.  Evaluating Explainers via Perturbation , 2019, ArXiv.

[30]  Lev V. Utkin,et al.  A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds , 2020, Neural Networks.

[31]  Chris Russell,et al.  Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.

[32]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[33]  Rich Caruana,et al.  How Interpretable and Trustworthy are GAMs? , 2020, KDD.

[34]  Andreas Bender,et al.  A generalized additive model approach to time-to-event analysis , 2018 .

[35]  Geoffrey E. Hinton,et al.  Neural Additive Models: Interpretable Machine Learning with Neural Nets , 2020, NeurIPS.

[36]  Ping Wang,et al.  Machine Learning for Survival Analysis , 2019, ACM Comput. Surv..

[37]  R. Tibshirani,et al.  Generalized additive models for medical research , 1995, Statistical methods in medical research.

[38]  Rich Caruana,et al.  InterpretML: A Unified Framework for Machine Learning Interpretability , 2019, ArXiv.

[39]  Marvin N. Wright,et al.  Unbiased split variable selection for random survival forests using maximally selected rank statistics , 2017, Statistics in medicine.

[40]  Junzhou Huang,et al.  Deep convolutional neural network for survival analysis with pathological images , 2016, 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[41]  Patrick Pérez,et al.  Explainability of vision-based autonomous driving systems: Review and challenges , 2021, ArXiv.

[42]  Vijayan N. Nair,et al.  Adaptive Explainable Neural Networks (Axnns) , 2020, ArXiv.

[43]  Georg Langs,et al.  Causability and explainability of artificial intelligence in medicine , 2019, WIREs Data Mining Knowl. Discov..

[44]  Ziyan Wu,et al.  Counterfactual Visual Explanations , 2019, ICML.

[45]  Andrea Vedaldi,et al.  Interpretable Explanations of Black Boxes by Meaningful Perturbation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[46]  Qiang Huang,et al.  GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks , 2020, IEEE Transactions on Knowledge and Data Engineering.

[47]  Erik Strumbelj,et al.  An Efficient Explanation of Individual Classifications using Game Theory , 2010, J. Mach. Learn. Res..

[48]  Sharath M. Shankaranarayana,et al.  ALIME: Autoencoder Based Approach for Local Interpretability , 2019, IDEAL.

[49]  Lev V. Utkin,et al.  An Explanation Method for Black-Box Machine Learning Survival Models Using the Chebyshev Distance , 2020 .

[50]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[51]  David W. Hosmer,et al.  Applied Survival Analysis: Regression Modeling of Time-to-Event Data , 2008 .

[52]  Michael Siebers,et al.  Enriching Visual with Verbal Explanations for Relational Concepts - Combining LIME with Aleph , 2019, PKDD/ECML Workshops.

[53]  Johannes Gehrke,et al.  Intelligible models for classification and regression , 2012, KDD.

[54]  Trevor Darrell,et al.  Grounding Visual Explanations , 2018, ECCV.

[55]  J. Friedman Stochastic gradient boosting , 2002 .

[56]  Qi Bi,et al.  Differential Convolution Feature Guided Deep Multi-Scale Multiple Instance Learning for Aerial Scene Classification , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[57]  Hao Helen Zhang,et al.  Adaptive Lasso for Cox's proportional hazards model , 2007 .

[58]  Nassir Navab,et al.  An Efficient Training Algorithm for Kernel Survival Support Vector Machines , 2016, ArXiv.

[59]  Matthias Schmid,et al.  On the use of Harrell's C for clinical risk prediction via random survival forests , 2015, Expert Syst. Appl..

[60]  Agus Sudjianto,et al.  GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions , 2020, Pattern Recognit..

[61]  Alejandro Barredo Arrieta,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2019, Inf. Fusion.

[62]  Kai Yang,et al.  A Deep Active Survival Analysis Approach for Precision Treatment Recommendations: Application of Prostate Cancer , 2018, Expert Syst. Appl..

[63]  Shuhei Kaneko,et al.  Enhancing the Lasso Approach for Developing a Survival Prediction Model Based on Gene Expression Data , 2015, Comput. Math. Methods Medicine.

[64]  Rich Caruana,et al.  Axiomatic Interpretability for Multiclass Additive Models , 2018, KDD.

[65]  Vaishak Belle,et al.  Principles and Practice of Explainable Machine Learning , 2020, Frontiers in Big Data.

[66]  Chandan Singh,et al.  Definitions, methods, and applications in interpretable machine learning , 2019, Proceedings of the National Academy of Sciences.

[67]  Robert Tibshirani,et al.  Survival analysis with high-dimensional covariates , 2010, Statistical methods in medical research.

[68]  Uri Shaham,et al.  DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network , 2016, BMC Medical Research Methodology.

[69]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[70]  Amit Dhurandhar,et al.  One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques , 2019, ArXiv.

[71]  Guisong Xia,et al.  A Multiple-Instance Densely-Connected ConvNet for Aerial Scene Classification , 2019, IEEE Transactions on Image Processing.

[72]  R. Tibshirani,et al.  Repeated observation of breast tumor subtypes in independent gene expression data sets , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Boyang Li,et al.  NormLime: A New Feature Importance Metric for Explaining Deep Neural Networks , 2019, ArXiv.

[74]  Jie Chen,et al.  Locally Interpretable Models and Effects based on Supervised Partitioning (LIME-SUP) , 2018, ArXiv.

[75]  Hemant Ishwaran,et al.  Evaluating Random Forests for Survival Analysis using Prediction Error Curves. , 2012, Journal of statistical software.

[76]  Kate Saenko,et al.  RISE: Randomized Input Sampling for Explanation of Black-box Models , 2018, BMVC.

[77]  Abdul Kudus,et al.  Decision Tree for Competing Risks Survival Probability in Breast Cancer Study , 2008 .

[78]  Maozhen Li,et al.  Explaining the black-box model: A survey of local interpretation methods for deep neural networks , 2021, Neurocomputing.

[79]  Jesse Thomason,et al.  Interpreting Black Box Models with Statistical Guarantees , 2019, ArXiv.

[80]  Theodoros Evgeniou,et al.  A comparison of instance-level counterfactual explanation algorithms for behavioral and textual data: SEDC, LIME-C and SHAP-C , 2019, Advances in Data Analysis and Classification.

[81]  Federico Rotolo,et al.  Empirical extensions of the lasso penalty to reduce the false discovery rate in high‐dimensional Cox regression models , 2016, Statistics in medicine.

[82]  Dorit Merhof,et al.  Image-based Survival Analysis for Lung Cancer Patients using CNNs. , 2018 .

[83]  Imran Kurt,et al.  The comparisons of random survival forests and Cox regression analysis with simulation and an application related to breast cancer , 2009, Expert Syst. Appl..

[84]  Naimul Mefraz Khan,et al.  DLIME: A Deterministic Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems , 2019, ArXiv.

[85]  Ralf Bender,et al.  Generating survival times to simulate Cox proportional hazards models , 2005, Statistics in medicine.

[86]  D.,et al.  Regression Models and Life-Tables , 2022 .

[87]  Maia Lesosky,et al.  A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data , 2017, BMC Medical Research Methodology.

[88]  N. Simon,et al.  Generalized Sparse Additive Models , 2019, J. Mach. Learn. Res..

[89]  Marcel van Gerven,et al.  Explainable Deep Learning: A Field Guide for the Uninitiated , 2020, J. Artif. Intell. Res..

[90]  Christophe Ambroise,et al.  Regularization Methods for Additive Models , 2003, IDA.

[91]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[92]  Janis Klaise,et al.  Interpretable Counterfactual Explanations Guided by Prototypes , 2019, ECML/PKDD.