Learning from nature: binary cooperative complementary nanomaterials.

In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering.

[1]  A J Heeger,et al.  Polymer Light-Emitting Electrochemical Cells:  In Situ Formation of a Light-Emitting p-n Junction. , 1996, Journal of the American Chemical Society.

[2]  G. Stucky,et al.  Silver-based intermetallic heterostructures in Sb2Te3 thick films with enhanced thermoelectric power factors. , 2012, Nano letters.

[3]  P. Braun,et al.  Multicompartmental materials by electrohydrodynamic cojetting. , 2009, Angewandte Chemie.

[4]  Julian H. George,et al.  Exploring and Engineering the Cell Surface Interface , 2005, Science.

[5]  K. Eberl,et al.  Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.

[6]  P. Levkin,et al.  Emerging Applications of Superhydrophilic‐Superhydrophobic Micropatterns , 2013, Advanced materials.

[7]  E. McCafferty,et al.  Effect of Ion Implantation on the Corrosion Behavior of Iron, Stainless Steels, and Aluminum—A Review , 2001 .

[8]  Youdong Mao,et al.  Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux. , 2007, Nature nanotechnology.

[9]  Lei Jiang,et al.  Direction Controlled Driving of Tiny Water Drops on Bioinspired Artificial Spider Silks , 2010, Advanced materials.

[10]  Javeed Shaikh Mohammed,et al.  Bioinspired Design of Dynamic Materials , 2009 .

[11]  Lei Jiang,et al.  Low-Cost, Thermoresponsive Wettability of Surfaces: Poly(N-isopropylacrylamide)/Polystyrene Composite Films Prepared by Electrospinning , 2008 .

[12]  Chao Li,et al.  Reversible Switching of Water‐Droplet Mobility on a Superhydrophobic Surface Based on a Phase Transition of a Side‐Chain Liquid‐Crystal Polymer , 2009, Advanced Materials.

[13]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[14]  Lei Jiang,et al.  Functional Fibers with Unique Wettability Inspired by Spider Silks , 2012, Advanced materials.

[15]  Jürgen Rühe,et al.  Wetting of Silicon Nanograss: From Superhydrophilic to Superhydrophobic Surfaces , 2008 .

[16]  Wei Guo,et al.  Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. , 2013, Accounts of chemical research.

[17]  J. Hao,et al.  Reversibly switchable wettability. , 2010, Chemical Society reviews.

[18]  W. Hu,et al.  Coaxial Organic p‐n Heterojunction Nanowire Arrays: One‐Step Synthesis and Photoelectric Properties , 2012, Advanced materials.

[19]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[20]  Yanlin Song,et al.  New responsive property of poly(epsilon-caprolactone) as the thermal switch from superhydrophobic to superhydrophilic. , 2008, Chemical Communications.

[21]  Chennupati Jagadish,et al.  Hybrid High‐Resolution Three‐Dimensional Nanofabrication for Metamaterials and Nanoplasmonics , 2013, Advanced materials.

[22]  C. Mirkin,et al.  The Electrical Properties of Gold Nanoparticle Assemblies Linked by DNA. , 2000, Angewandte Chemie.

[23]  Jin Zhai,et al.  Directional water collection on wetted spider silk , 2010, Nature.

[24]  F. Omenetto,et al.  Bio‐microfluidics: Biomaterials and Biomimetic Designs , 2010, Advanced materials.

[25]  Lei Jiang,et al.  The art of aligning one-dimensional (1D) nanostructures. , 2012, Chemical Society reviews.

[26]  Yanlin Song,et al.  Photo-switched wettability on an electrostatic self-assembly azobenzene monolayer. , 2005, Chemical communications.

[27]  E. Stulz,et al.  DNA as supramolecular scaffold for functional molecules: progress in DNA nanotechnology. , 2011, Chemical Society reviews.

[28]  Zhiyong Tang,et al.  One‐Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise , 2005 .

[29]  C. H. Sowers,et al.  EXCHANGE-SPRING BEHAVIOR IN EPITAXIAL HARD/SOFT MAGNETIC BILAYERS , 1998 .

[30]  Shu Yang,et al.  From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[31]  Xiangyang Huang,et al.  Effects of nano-TiO2 dispersion on the thermoelectric properties offilled-skutterudite Ba0.22Co4Sb12 , 2009 .

[32]  Lei Jiang,et al.  Functional biointerface materials inspired from nature. , 2011, Chemical Society reviews.

[33]  Lei Jiang,et al.  Patterned Wettability Transition by Photoelectric Cooperative and Anisotropic Wetting for Liquid Reprography , 2009 .

[34]  N. Denkov,et al.  The role of surfactant type and bubble surface mobility in foam rheology , 2009 .

[35]  Lei Jiang,et al.  Concentration-gradient-dependent ion current rectification in charged conical nanopores. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[36]  T. Goto,et al.  Synthesis of YbyCo4Sb12∕Yb2O3 composites and their thermoelectric properties , 2006 .

[37]  J. Coey,et al.  Giant energy product in nanostructured two-phase magnets. , 1993, Physical review. B, Condensed matter.

[38]  Lei Jiang,et al.  Integrating Ionic Gate and Rectifier Within One Solid‐State Nanopore via Modification with Dual‐Responsive Copolymer Brushes , 2010 .

[39]  Dong Yun Lee,et al.  UV-driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity. , 2007, Journal of the American Chemical Society.

[40]  Schreiber,et al.  Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. , 1986, Physical review letters.

[41]  Lei Zhai,et al.  Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. , 2006, Nano letters.

[42]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[43]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[44]  I Sam Saguy,et al.  Mechanism of oil uptake during deep-fat frying and the surfactant effect-theory and myth. , 2006, Advances in colloid and interface science.

[45]  Feng Shi,et al.  Smart Transportation Between Three Phases Through a Stimulus‐Responsive Functionally Cooperating Device , 2013, Advanced materials.

[46]  Xinjian Feng,et al.  Design and Creation of Superwetting/Antiwetting Surfaces , 2006 .

[47]  A. Mosk,et al.  Optical control of plasmonic Bloch modes on periodic nanostructures. , 2012, Nano letters.

[48]  Glenn P. Bartholomew,et al.  Self‐Assembled, Chemically Fixed Homojunctions in Semiconducting Polymers , 2006 .

[49]  M. Hanson,et al.  The dental amalgam issue. A review , 1991, Experientia.

[50]  D. Sellmyer,et al.  Exchange Coupling and Remanence Enhancement in Nanocomposite Multilayer Magnets , 2002 .

[51]  Christopher B. Murray,et al.  Quasicrystalline order in self-assembled binary nanoparticle superlattices , 2009, Nature.

[52]  Yanbing Guo,et al.  Fabrication and Field‐Emission Properties of Large‐Area Nanostructures of the Organic Charge‐Transfer Complex Cu‐TCNAQ , 2008 .

[53]  Y. Romanyuk,et al.  Thermoelectric properties of nanostructured Al-substituted ZnO thin films , 2012 .

[54]  Qingxin Tang,et al.  Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. , 2006, Journal of the American Chemical Society.

[55]  Jin Zhai,et al.  Super-hydrophobic surfaces: From natural to artificial , 2002 .

[56]  Maria Varela,et al.  “Charge Leakage” at LaMnO3/SrTiO3 Interfaces , 2010, Advanced materials.

[57]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[58]  Lei Jiang,et al.  Cytophilic/cytophobic design of nanomaterials at biointerfaces. , 2013, Small.

[59]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[60]  K. Ernst Molecular chirality in surface science , 2013 .

[61]  Jin Zhai,et al.  Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. , 2004, Journal of the American Chemical Society.

[62]  Zeming He,et al.  Nano ZrO2/CoSb3 composites with improved thermoelectric figure of merit , 2007 .

[63]  Richard G. Blair,et al.  Nanostructured Bulk Silicon as an Effective Thermoelectric Material , 2009 .

[64]  Lei Jiang,et al.  Chemical Dual-Responsive Wettability of Superhydrophobic PANI-PAN Coaxial Nanofibers , 2007 .

[65]  D. Chandler,et al.  Hydrophobicity at Small and Large Length Scales , 1999 .

[66]  Jae Kwan Lee,et al.  "Columnlike" structure of the cross-sectional morphology of bulk heterojunction materials. , 2009, Nano letters.

[67]  Filip Braet,et al.  Carbon nanomaterials in biosensors: should you use nanotubes or graphene? , 2010, Angewandte Chemie.

[68]  Alan J. Heeger,et al.  Spatial Fourier‐Transform Analysis of the Morphology of Bulk Heterojunction Materials Used in “Plastic” Solar Cells , 2007 .

[69]  E. Vogler,et al.  Structure and reactivity of water at biomaterial surfaces. , 1998, Advances in colloid and interface science.

[70]  Chad A Mirkin,et al.  Control of nanoparticle assembly by using DNA-modified diatom templates. , 2004, Angewandte Chemie.

[71]  Daoben Zhu,et al.  Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors. , 2008, Physical chemistry chemical physics : PCCP.

[72]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[73]  D. Clapham,et al.  An introduction to TRP channels. , 2006, Annual review of physiology.

[74]  S. Lim,et al.  Enhanced Electrical Potential of Thermoelectric Power Waves by Sb2Te3-Coated Multiwalled Carbon Nanotube Arrays , 2013 .

[75]  Lei Jiang,et al.  Controlling wettability and photochromism in a dual-responsive tungsten oxide film. , 2006, Angewandte Chemie.

[76]  Srijanani Bhaskar,et al.  Microstructured materials based on multicompartmental fibers. , 2009, Journal of the American Chemical Society.

[77]  Lei Jiang,et al.  Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic IMPLICATION logic device. , 2012, Journal of the American Chemical Society.

[78]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[79]  Aaron R Wheeler,et al.  A microfluidic platform for complete mammalian cell culture. , 2010, Lab on a chip.

[80]  J. McGettrick,et al.  Mimicking a Stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[81]  Lei Jiang,et al.  Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source , 2010 .

[82]  Lei Jiang,et al.  UV-manipulated wettability between superhydrophobicity and superhydrophilicity on a transparent and conductive SnO2 nanorod film. , 2006, Chemical communications.

[83]  Xiaonan Li,et al.  A photoemission determination of the band diagram of the Te/CdTe interface , 1995 .

[84]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[85]  Shaoyi Jiang,et al.  Ultralow‐Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications , 2010, Advanced materials.

[86]  Cyrille Boyer,et al.  Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition. , 2008, ACS nano.

[87]  Gui Yu,et al.  A stable solution-processed polymer semiconductor with record high-mobility for printed transistors , 2012, Scientific Reports.

[88]  Feng Zhou,et al.  Switching water droplet adhesion using responsive polymer brushes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[89]  S. Raoux,et al.  Ionic and Electronic Transport in Ag2S Nanocrystal–GeS2 Matrix Composites with Size‐Controlled Ag2S Nanocrystals , 2012, Advanced materials.

[90]  Taolei Sun,et al.  Chiral biointerface materials. , 2012, Chemical Society reviews.

[91]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[92]  P. Mulvaney,et al.  DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures , 2013 .

[93]  Wei Guo,et al.  Bio‐Inspired Two‐Dimensional Nanofluidic Generators Based on a Layered Graphene Hydrogel Membrane , 2013, Advanced materials.

[94]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[95]  L. Jiang,et al.  Multiresponsive Surfaces Change Between Superhydrophilicity and Superhydrophobicity , 2007 .

[96]  Wei Liu,et al.  Exchange couplings in magnetic films , 2013 .

[97]  Local photoelectric conversion properties of titanyl-phthalocyanine (TiOPc) coated aligned ZnO nanorods. , 2010, Chemical communications.

[98]  O. Inganäs Hybrid electronics and electrochemistry with conjugated polymers. , 2010, Chemical Society reviews.

[99]  Xu Hou,et al.  Gating of single synthetic nanopores by proton-driven DNA molecular motors. , 2008, Journal of the American Chemical Society.

[100]  Kateryna Artyushkova,et al.  Reversible control of free energy and topography of nanostructured surfaces. , 2004, Journal of the American Chemical Society.

[101]  Christof M Niemeyer,et al.  Rational design of DNA nanoarchitectures. , 2006, Angewandte Chemie.

[102]  Klaus Müllen,et al.  The chemistry of organic nanomaterials. , 2005, Angewandte Chemie.

[103]  Yanlin Song,et al.  Photoelectric Cooperative Induced Wetting on Aligned‐Nanopore Arrays for Liquid Reprography , 2011 .

[104]  Lei Jiang,et al.  Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition , 2011 .

[105]  Lei Jiang,et al.  Reversible Wettability Switching of Polyaniline‐Coated Fabric, Triggered by Ammonia Gas , 2007 .

[106]  Lei Jiang,et al.  Wetting: intrinsically robust hydrophobicity. , 2013, Nature materials.

[107]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[108]  Sönke Svenson Controlling surfactant self-assembly , 2004 .

[109]  Li Zhang,et al.  A Supramolecular Chiroptical Switch Exclusively from an Achiral Amphiphile , 2006 .

[110]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[111]  Yongping Hou,et al.  Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. , 2013, Chemical communications.

[112]  Wei Guo,et al.  A biomimetic zinc activated ion channel. , 2010, Chemical communications.

[113]  K. Krieger Do Pool Sharks Swim Faster? , 2004, Science.

[114]  A. Heeger,et al.  Semiconducting polymers: the Third Generation. , 2010, Chemical Society reviews.

[115]  Kronmüller,et al.  Remanence and coercivity in isotropic nanocrystalline permanent magnets. , 1994, Physical review. B, Condensed matter.

[116]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[117]  Q. Ouyang,et al.  Asymmetric properties of ion transport in a charged conical nanopore. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[118]  K.-S. Cho,et al.  Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots , 2003, Nature.

[119]  Guillermo C Bazan,et al.  "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. , 2009, Accounts of chemical research.

[120]  Bin Su,et al.  Elaborate Positioning of Nanowire Arrays Contributed by Highly Adhesive Superhydrophobic Pillar‐Structured Substrates , 2012, Advanced materials.

[121]  M. Shaposhnikov,et al.  Matter and antimatter in the universe , 2012, 1204.4186.

[122]  M. Bojowald What happened before the Big Bang , 2007 .

[123]  F. Collins,et al.  Principles of Biochemistry , 1937, The Indian Medical Gazette.

[124]  Dongsheng Liu,et al.  DNA-based switchable devices and materials , 2011 .

[125]  Lei Jiang,et al.  Responsive aligned carbon nanotubes. , 2004, Angewandte Chemie.

[126]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[127]  Genqiang Zhang,et al.  Enhanced Thermoelectric Properties of Core/Shell Heterostructure Nanowire Composites , 2008 .

[128]  L. Haverkate,et al.  Large Space‐Charge Effects in a Nanostructured Proton Conductor , 2010 .

[129]  Paul A Davies,et al.  A Novel Class of Ligand-gated Ion Channel Is Activated by Zn2+ * , 2003, The Journal of Biological Chemistry.

[130]  Xu Hou,et al.  A biomimetic asymmetric responsive single nanochannel. , 2010, Journal of the American Chemical Society.

[131]  Xu Hou,et al.  Current rectification in temperature-responsive single nanopores. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[132]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[133]  Yongmei Zheng,et al.  Icephobic/Anti‐Icing Properties of Micro/Nanostructured Surfaces , 2012, Advanced materials.

[134]  C. Binek,et al.  Exchange bias training effect in coupled all ferromagnetic bilayer structures. , 2006, Physical review letters.

[135]  Lei Jiang,et al.  Dual‐Responsive Surfaces That Switch between Superhydrophilicity and Superhydrophobicity , 2006 .

[136]  Jin Zhai,et al.  Bioinspired Smart Gating of Nanochannels Toward Photoelectric‐Conversion Systems , 2010, Advanced materials.

[137]  Warren C. W. Chan,et al.  Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges , 2006 .

[138]  Lei Jiang,et al.  Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Water‐in‐Oil Emulsions with High Flux , 2013, Advanced materials.

[139]  K. Hashimoto,et al.  Binary cooperative complementary nanoscale interfacial materials , 2000 .

[140]  Lei Jiang,et al.  A multi-structural and multi-functional integrated fog collection system in cactus , 2012, Nature Communications.

[141]  Jihui Yang,et al.  Enhanced thermoelectric figure of merit of CoSb3 via large-defect scattering , 2004 .

[142]  C. B. Vining,et al.  Si80Ge20 thermoelectric alloys prepared with GaP additions , 1995 .

[143]  A. Tomkinson,et al.  DNA ligases: structure, reaction mechanism, and function. , 2006, Chemical reviews.

[144]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[145]  Rohit Rosario,et al.  Lotus Effect Amplifies Light-Induced Contact Angle Switching , 2004 .

[146]  C. R. Martin,et al.  The emerging field of nanotube biotechnology , 2003, Nature Reviews Drug Discovery.

[147]  David E. Clapham,et al.  TRP channels as cellular sensors , 2003, Nature.

[148]  Lei Jiang,et al.  Photoswitched wettability on inverse opal modified by a self-assembled azobenzene monolayer. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[149]  Stephen Mann,et al.  Bio-inspired materials chemistry , 2002 .

[150]  Lei Jiang,et al.  Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[151]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[152]  Jin Zhai,et al.  Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[153]  Cefe López,et al.  Materials Aspects of Photonic Crystals , 2003 .

[154]  K. Nielsch,et al.  Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites , 2011 .

[155]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[156]  Teri W Odom,et al.  Broadband plasmonic microlenses based on patches of nanoholes. , 2010, Nano letters.

[157]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[158]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[159]  W. Guo,et al.  Controllable etching of heavy ion tracks with organic solvent addition in etchant , 2008 .

[160]  Rabah Boukherroub,et al.  Wettability Switching Techniques on Superhydrophobic Surfaces , 2007, Nanoscale Research Letters.

[161]  Yanbing Guo,et al.  Light-controlled organic/inorganic P-N junction nanowires. , 2008, Journal of the American Chemical Society.

[162]  Wei Guo,et al.  Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication , 2012, Nano Research.

[163]  N. Brookes,et al.  Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces. , 2010, Nature communications.

[164]  S. Pennycook,et al.  Tailoring Interface Structure in Highly Strained YSZ/STO Heterostructures , 2011, Advanced materials.

[165]  Yang Liu,et al.  High‐Temperature Gating of Solid‐State Nanopores with Thermo‐Responsive Macromolecular Nanoactuators in Ionic Liquids , 2012, Advanced materials.

[166]  A. Fujishima,et al.  TiO2-based superhydrophobic–superhydrophilic patterns: Fabrication via an ink-jet technique and application in offset printing , 2009 .

[167]  Paulo Roberto Bueno,et al.  Nanostructured Li Ion Insertion Electrodes. 1. Discussion on Fast Transport and Short Path for Ion Diffusion , 2003 .

[168]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[169]  A. Heeger,et al.  “Liquid‐Liquid‐Solid”‐Type Superoleophobic Surfaces to Pattern Polymeric Semiconductors towards High‐Quality Organic Field‐Effect Transistors , 2013, Advanced materials.

[170]  Akira Fujishima,et al.  Transparent Superhydrophobic Thin Films with Self-Cleaning Properties , 2000 .

[171]  Jian Zhang,et al.  DNA-nanoparticle superlattices formed from anisotropic building blocks. , 2010, Nature materials.

[172]  Robert Sinclair,et al.  High‐Moment Antiferromagnetic Nanoparticles with Tunable Magnetic Properties , 2008 .

[173]  T. Michinobu,et al.  Crystalline Thin Film of a Donor‐ Substituted Cyanoethynylethene for Nanoscale Data Recording Through Intermolecular Charge‐Transfer Interactions , 2005 .

[174]  Lei Jiang,et al.  Reversible switching between superhydrophilicity and superhydrophobicity. , 2004, Angewandte Chemie.

[175]  Chad A. Mirkin,et al.  Programmed Materials Synthesis with DNA. , 1999, Chemical reviews.

[176]  Yanlin Song,et al.  Thermal-responsive hydrogel surface: tunable wettability and adhesion to oil at the water/solid interface , 2010 .

[177]  Lei Jiang,et al.  Switchable wettability on cooperative dual-responsive poly-L-lysine surface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[178]  Lei Jiang,et al.  Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. , 2007, Angewandte Chemie.

[179]  Lei Jiang,et al.  Two-way nanopore sensing of sequence-specific oligonucleotides and small-molecule targets in complex matrices using integrated DNA supersandwich structures. , 2013, Angewandte Chemie.

[180]  L. Novotný,et al.  Antennas for light , 2011 .

[181]  C. Patrick Royall,et al.  Ionic colloidal crystals of oppositely charged particles , 2005, Nature.

[182]  Samir Mitragotri,et al.  Physical approaches to biomaterial design. , 2009, Nature materials.

[183]  A. Harris,et al.  Nanotechnology innovations for the construction industry , 2013 .

[184]  Jin Zhai,et al.  The fabrication and switchable superhydrophobicity of TiO2 nanorod films. , 2005, Angewandte Chemie.

[185]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[186]  S J Pennycook,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures , 2008, Science.

[187]  Jamie R Lead,et al.  Nanomaterials in the environment: Behavior, fate, bioavailability, and effects , 2008, Environmental toxicology and chemistry.

[188]  A. Turnbull,et al.  Review: Corrosion and cracking of weldable 13 wt-%Cr martensitic stainless steels for application in the oil and gas industry , 2003 .

[189]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[190]  Thomas H. Reilly,et al.  Controlling the optical properties of plasmonic disordered nanohole silver films. , 2010, ACS nano.

[191]  S. Katsuyama,et al.  Effect of NiSb on the thermoelectric properties of skutterudite CoSb3 , 2003 .

[192]  S. Giri,et al.  Exchange bias effect in alloys and compounds , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[193]  Lei Jiang,et al.  A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. , 2004, Angewandte Chemie.

[194]  Bernd Nilius,et al.  The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels , 2004, Nature.

[195]  Bruce C. Bunker,et al.  Reversible switching of interfacial interactions , 2008 .

[196]  V. Lifton,et al.  Robust Si-Based Membranes for Fluid Control in Microbatteries Using Superlyophobic Nanostructures , 2011, Journal of Microelectromechanical Systems.

[197]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.