Protecting single-photon entanglement with practical entanglement source

Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

[1]  Yu-Bo Sheng,et al.  Linear-optical qubit amplification with spontaneous parametric down-conversion source , 2015 .

[2]  Shohini Ghose,et al.  Hyperentanglement concentration for time-bin and polarization hyperentangled photons , 2015, 1502.02891.

[3]  Lan Zhou,et al.  Protecting single-photon entanglement with imperfect single-photon source , 2015, Quantum Inf. Process..

[4]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[5]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[6]  Xiongfeng Ma,et al.  Efficient heralding of photonic qubits with applications to device-independent quantum key distribution , 2011, 1105.2811.

[7]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[8]  Chitra Shukla,et al.  Maximal entanglement concentration for a set of $$(n+1)$$(n+1)-qubit states , 2015, Quantum Inf. Process..

[9]  Guang-Can Guo,et al.  Long baseline weak-thermal-light interferometry with noiseless linear amplification , 2015 .

[10]  T. Moroder,et al.  Heralded-qubit amplifiers for practical device-independent quantum key distribution , 2011, 1105.2573.

[11]  Lan Zhou,et al.  Efficient entanglement concentration for electron-spin W state with the charge detection , 2012, Quantum Information Processing.

[12]  N. Walk,et al.  Heralded noiseless linear amplification and distillation of entanglement , 2009, 0907.3638.

[13]  Lan Zhou,et al.  Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity , 2016, Quantum Inf. Process..

[14]  N. Gisin,et al.  Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. , 2010, Physical review letters.

[15]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[16]  Jaewan Kim,et al.  Quantum teleportation and Bell’s inequality using single-particle entanglement , 2000 .

[17]  B. Zheng,et al.  Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs , 2012, 1202.2190.

[18]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[19]  Chuan Wang,et al.  Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems , 2015, Quantum Inf. Process..

[20]  N J Cerf,et al.  Noiseless loss suppression in quantum optical communication. , 2012, Physical review letters.

[21]  Félix Bussières,et al.  Heralded amplification of photonic qubits. , 2015, Optics express.

[22]  Xiaolong Su,et al.  Preparation of multipartite entangled states used for quantum information networks , 2014 .

[23]  Lan Zhou,et al.  Efficient N-particle W state concentration with different parity check gates , 2012, 1204.1492.

[24]  Yu-Bo Sheng,et al.  Hybrid entanglement purification for quantum repeaters , 2013 .

[25]  Lan Zhou,et al.  Efficient single-photon entanglement concentration for quantum communications , 2012, 1209.6517.

[26]  Yu-Bo Sheng,et al.  Distilling single-photon entanglement from photon loss and decoherence , 2013, 1306.1601.

[27]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[28]  Yu-Bo Sheng,et al.  Single-photon entanglement concentration for long-distance quantum communication , 2009, Quantum Inf. Comput..

[29]  Christoph Simon,et al.  Purification of single-photon entanglement with linear optics , 2008, 0811.2953.

[30]  N. Gisin,et al.  Witnessing single-photon entanglement with local homodyne measurements: analytical bounds and robustness to losses , 2012, 1406.0381.

[31]  Yan Xia,et al.  Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics , 2014, Quantum Information Processing.

[32]  Kyo Inoue,et al.  Robustness of differential-phase-shift quantum key distribution against photon-number-splitting attack , 2005 .

[33]  A. Černoch,et al.  Experimental implementation of the multifunctional compact two-photon state analyzer. , 2012, Applied optics.

[34]  Shengmei Zhao,et al.  Efficient two-step entanglement concentration for arbitrary W states , 2012, 1202.3019.

[35]  Guang-Can Guo,et al.  Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality. , 2015, Physical review letters.

[36]  M. Koashi,et al.  Concentration and purification scheme for two partially entangled photon pairs , 2001, quant-ph/0101042.

[37]  H Zbinden,et al.  Revealing genuine optical-path entanglement. , 2015, Physical review letters.

[38]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[39]  Tie-Jun Wang,et al.  High-efficient entanglement distillation from photon loss and decoherence. , 2015, Optics express.

[40]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[41]  N Gisin,et al.  Purification of single-photon entanglement. , 2010, Physical review letters.

[42]  Lan Zhou,et al.  Efficient entanglement concentration for arbitrary single-photon multimode W state , 2012, 1210.6178.

[43]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[44]  Fuguo Deng,et al.  Heralded entanglement concentration for photon systems with linear-optical elements , 2015 .

[45]  Shengmei Zhao,et al.  Efficient entanglement concentration for arbitrary less-entangled NOON states , 2012, Quantum Information Processing.

[46]  Lan Zhou,et al.  Deterministic entanglement distillation for secure double-server blind quantum computation , 2013, Scientific Reports.

[47]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[48]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[49]  Geoff J. Pryde,et al.  Heralded noiseless amplification of a photon polarization qubit , 2012, Nature Physics.

[50]  Fuguo Deng,et al.  Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics , 2008, 0806.0115.

[51]  Christoph Simon,et al.  Robust and efficient quantum repeaters with atomic ensembles and linear optics , 2008 .

[52]  Lan Zhou,et al.  Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state , 2015, Quantum Inf. Process..

[53]  Yu-Bo Sheng,et al.  Deterministic polarization entanglement purification using time-bin entanglement , 2013, 1311.0470.

[54]  Tie-Jun Wang,et al.  Linear-optical implementation of hyperdistillation from photon loss , 2014 .

[55]  Chuan Wang,et al.  Hybrid entanglement concentration using quantum dot and microcavity coupled system , 2014, Quantum Inf. Process..

[56]  Yu-Bo Sheng,et al.  Recyclable amplification protocol for the single-photon entangled state , 2015 .

[57]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[58]  S. J. van Enk,et al.  Single-particle entanglement , 2005, quant-ph/0507189.

[59]  Jan Soubusta,et al.  Entanglement-based linear-optical qubit amplifier , 2013, 1306.1342.

[60]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[61]  Andrew G. White,et al.  Nonmaximally Entangled States: Production, Characterization, and Utilization , 1999, quant-ph/9908081.

[62]  N. Gisin,et al.  Heralded photon amplification for quantum communication , 2012, 1203.3396.

[63]  Jin-Shi Xu,et al.  Quantum integrated circuit: classical characterization , 2015 .

[64]  Guang-Can Guo,et al.  Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons , 2015 .

[65]  Hoshang Heydari,et al.  Experimental demonstration of single photon nonlocality. , 2004, Physical review letters.

[66]  Wen-Xue Cui,et al.  Scheme for realizing the entanglement concentration of unknown partially entangled three-photon W states assisted by a quantum dot-microcavity coupled system , 2014 .

[67]  Fu-Guo Deng,et al.  Two-step hyperentanglement purification with the quantum-state-joining method , 2014, 1408.0048.

[68]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[69]  Tao Li,et al.  High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED , 2015, Quantum Inf. Process..

[70]  Lan Zhou,et al.  Distillation of arbitrary single-photon entanglement assisted with polarized Bell states , 2015, Quantum Inf. Process..

[71]  Daowen Qiu,et al.  Three-step semiquantum secure direct communication protocol , 2014, Science China Physics, Mechanics & Astronomy.

[72]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[73]  Chitra Shukla,et al.  Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states , 2014, Quantum Inf. Process..

[74]  Gui-Lu Long,et al.  Experimental quantum secure direct communication with single photons , 2015, Light: Science & Applications.

[75]  N. Gisin,et al.  Demonstration of Einstein-Podolsky-Rosen Steering Using Single-Photon Path Entanglement and Displacement-Based Detection. , 2016, Physical review letters.

[76]  Shohini Ghose,et al.  Hyperconcentration for multipartite entanglement via linear optics , 2014, 1601.03755.

[77]  Lan Zhou,et al.  Quantum Entanglement Concentration Based on Nonlinear Optics for Quantum Communications , 2013, Entropy.

[78]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[79]  Guang-Can Guo,et al.  Protecting single-photon entangled state from photon loss with noiseless linear amplification , 2012 .

[80]  Lei Wang,et al.  Protecting sing-photon multi-mode W state from photon loss , 2014, Quantum Inf. Process..

[81]  Jian-Wei Pan,et al.  Practical scheme for entanglement concentration , 2001, quant-ph/0104039.