Approximations and optimal geometric divide-and-conquer

We give an efficient deterministic algorithm for computing ?-approximations and ?-nets for range spaces of bounded VC-dimension. We assume that an n-point range space ? = (X, R) of VC-dimension d is given to us by an oracle, which given a subset A ? X, returns a list of all distinct sets of the form A ? R; R ? R (in time O(|A|d+1)). Given a parameter r, the algorithm computes a (1/r)-approximation of size O(r2 log r) for ?, in time O(n(r2 log r)d). A (1/r)-net of size O(r log r) can be computed within the same time bound. We also obtain a new deterministic algorithm which for a given collection H of n hyperplanes in Ed and a parameter r ? n computes a (1/r)-cutting of (asymptotically optimal) size O(rd). For r ? n1??, where ? > 0 is arbitrary but fixed, the running time is O(nrd?1), which is optimal for geometric divide-and-conquer applications.

[1]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..

[2]  Jirí Matousek Construction of ɛ-nets , 1990, Discret. Comput. Geom..

[3]  Bernard Chazelle,et al.  Quasi-optimal range searching in spaces of finite VC-dimension , 1989, Discret. Comput. Geom..

[4]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[5]  Jirí Matousek,et al.  Cutting hyperplane arrangements , 1990, SCG '90.

[6]  Gerhard J. Woeginger,et al.  Some new bounds for Epsilon-nets , 1990, SCG '90.

[7]  Pankaj K. Agarwal Partitioning arrangements of lines I: An efficient deterministic algorithm , 1990, Discret. Comput. Geom..

[8]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[9]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[10]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[11]  János Komlós,et al.  Almost tight bounds forɛ-Nets , 1992, Discret. Comput. Geom..

[12]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[13]  J. Spencer Ten lectures on the probabilistic method , 1987 .

[14]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.