On the Transition Reduction Problem for Finite Automata

In this paper we apply the concept of common follow sets CFS of a regular expression to homogeneous finite state automaton. Based on this concept and using particular binary trees, we devise an efficient algorithm to reduce minimize the number of transitions of the automaton recognizing the language LEn denoted by the regular expression $E_n = 1 + \epsiv \cdot 2 + \epsiv \cdot 3 + \epsiv \dots n+\epsiv$. Experiments reveal that for small values of n, all e-free NFAs with n+1 states and with a minimum number of transitions for LEn are exactly those obtained by our construction. Also, the produced e-free NFA is asymptotically minimal, in the sense that the number of transitions is equivalent to nlog2 n2 which corresponds in the same time to the upper and the lower bound. We conjecture that our construction is not only a reduction but a minimization for LEn.

[1]  P. Bateman,et al.  A Hundred Years of Prime Numbers , 1996 .

[2]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[3]  Djelloul Ziadi,et al.  Efficient weighted expressions conversion , 2008, RAIRO Theor. Informatics Appl..

[4]  Djelloul Ziadi,et al.  An Efficient Computation of the Equation K-automaton of a Regular K-expression , 2009, Fundam. Informaticae.

[5]  Yuri Lifshits A lower bound on the size of [epsiv]-free NFA corresponding to a regular expression , 2003, Inf. Process. Lett..

[6]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[7]  Ahmed Khorsi,et al.  Fast equation automaton computation , 2008, J. Discrete Algorithms.

[8]  Thomas Wilke,et al.  Translating Regular Expressions into Small epsilon-Free Nondeterministic Finite Automata , 1997, STACS.

[9]  T. Apostol Introduction to analytic number theory , 1976 .

[10]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[11]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[12]  Jacques Sakarovitch,et al.  The universal automaton , 2008, Logic and Automata.

[13]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[14]  G. Schnitger Regular expressions and NFAs without ε-transitions , 2006 .

[15]  Anca Muscholl,et al.  Computing epsilon-free NFA from regular expressions in O(n log2(n)) time , 2000, RAIRO Theor. Informatics Appl..

[16]  Anca Muscholl,et al.  Computing epsilon-Free NFA from Regular Expressions in O(n log²(n)) Time , 1998, MFCS.

[17]  Viliam Geffert Translation of binary regular expressions into nondeterministic [epsiv]-free automata with transitions , 2003, J. Comput. Syst. Sci..

[18]  Thomas Wilke,et al.  Translating Regular Expressions into Small epsilon-Free Nondeterministic Finite Automata , 1997, STACS.