Experimental measurements of ultra-lean hydrogen ignition delays using a rapid compression machine under internal combustion engine conditions

[1]  A. Parente,et al.  Estimation of third body efficiencies from experimental data: Application to hydrogen combustion , 2023, International Journal of Hydrogen Energy.

[2]  Abdullah S. AlRamadan,et al.  Hydrogen pre-chamber combustion at lean-burn conditions on a heavy-duty diesel engine: A computational study , 2023, Fuel.

[3]  Fuquan Deng,et al.  Further insights into the core mechanism of H2/CO/NOx reaction system , 2022, Combustion and Flame.

[4]  H. Im,et al.  Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP , 2022, Energy Conversion and Management.

[5]  P. Glarborg,et al.  HȮ2 + HȮ2: High level theory and the role of singlet channels , 2022, Combustion and Flame.

[6]  Yuyang Li,et al.  Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm , 2021 .

[7]  C. Mounaïm-Rousselle,et al.  Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions , 2020, Fuel.

[8]  A. Konnov Yet another kinetic mechanism for hydrogen combustion , 2019, Combustion and Flame.

[9]  F. Mauss,et al.  Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides , 2018, Energy & Fuels.

[10]  Francesco Contino,et al.  CFD simulations of Rapid Compression Machines using detailed chemistry: Evaluation of the ‘crevice containment’ concept , 2018 .

[11]  Margaret S. Wooldridge,et al.  Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena , 2017 .

[12]  Taku Tsujimura,et al.  A review of hydrogen as a compression ignition engine fuel , 2017 .

[13]  Hongguang Zhang,et al.  Autoignition of DME/H2 mixtures in a rapid compression machine under low-to-medium temperature ranges , 2017 .

[14]  L. Das,et al.  Development of hydrogen fuelled transport engine and field tests on vehicles , 2017 .

[15]  Zuohua Huang,et al.  Shock tube study on ignition delay of hydrogen and evaluation of various kinetic models , 2016 .

[16]  Pg Aleiferis,et al.  Numerical Modelling of Mixture Formation and Combustion in DISI Hydrogen Engines with Various Injection Strategies , 2014 .

[17]  Zuo-hua Huang,et al.  Shock tube and kinetic study of C2H6/H2/O2/Ar mixtures at elevated pressures , 2014 .

[18]  F. Williams,et al.  Recent advances in understanding of flammability characteristics of hydrogen , 2014 .

[19]  Sebastian Verhelst,et al.  Recent progress in the use of hydrogen as a fuel for internal combustion engines , 2014 .

[20]  Peter Griebel,et al.  An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures , 2013 .

[21]  H. Levinsky,et al.  The effects of CO addition on the autoignition of H-2, CH4 and CH4/H-2 fuels at high pressure in an RCM , 2012 .

[22]  M. P. Burke,et al.  Comprehensive H2/O2 kinetic model for high‐pressure combustion , 2012 .

[23]  Yu Zhang,et al.  Ignition Delay Study of Moist Hydrogen/Oxidizer Mixtures Using a Rapid Compression Machine , 2012 .

[24]  R. Mikalsen,et al.  An investigation of hydrogen-fuelled HCCI engine performance and operation , 2008 .

[25]  Howard Levinsky,et al.  Ignition properties of methane/hydrogen mixtures in a rapid compression machine , 2008 .

[26]  Richard A. Yetter,et al.  Autoignition of H2/CO at elevated pressures in a rapid compression machine , 2006 .

[27]  C. Westbrook,et al.  A comprehensive modeling study of hydrogen oxidation , 2004 .

[28]  Zhenwei Zhao,et al.  An updated comprehensive kinetic model of hydrogen combustion , 2004 .

[29]  C. Sung,et al.  Structure, aerodynamics, and geometry of premixed flamelets , 2000 .

[30]  H. Curran,et al.  A comprehensive experimental and simulation study of ignition delay time characteristics of single fuel C1–C2 hydrocarbons over a wide range of temperatures, pressures, equivalence ratios, and dilutions Ignition Delay Time Characteristics of over a Wide Range of , 2021 .

[31]  H. Jeanmart,et al.  Experimental and numerical study, under LTC conditions, of ammonia ignition delay with and without hydrogen addition , 2019, Proceedings of the Combustion Institute.

[32]  P. Glarborg,et al.  Hydrogen oxidation at high pressure and intermediate temperatures: Experiments and kinetic modeling , 2015 .

[33]  Lawrence B. Harding,et al.  A quantitative explanation for the apparent anomalous temperature dependence of OH + HO2 = H2O + O2 through multi-scale modeling , 2013 .

[34]  Genny A. Pang,et al.  Experimental study and modeling of shock tube ignition delay times for hydrogen–oxygen–argon mixtures at low temperatures , 2009 .

[35]  Kevin J. Hughes,et al.  Significance of the HO2 + CO reaction during the combustion of CO + H2 mixtures at high pressures , 2007 .

[36]  Simone Hochgreb,et al.  Hydrogen autoignition at pressures above the second explosion limit (0.6-4.0 MPa) , 1998 .

[37]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[38]  L. Das Hydrogen engines: A view of the past and a look into the future , 1990 .

[39]  Robert J. Moffat,et al.  Describing the Uncertainties in Experimental Results , 1988 .