Knowledge for Intelligent Industrial Robots

This paper describes an attempt to provide more intelligence to industrial robotics and automation systems. We develop an architecture to integrate disparate knowledge representations used in different places in robotics and automation. This knowledge integration framework, a possibly distributed entity, abstracts the components used in design or production as data sources, and provides a uniform access to them via standard interfaces. Representation is based on the ontology formalizing the process, product and resource triangle, where skills are considered the common element of the three. Production knowledge is being collected now and a preliminary version of KIF undergoes verification.

[1]  R. H. Richens,et al.  Preprogramming for mechanical translation , 1956, Mech. Transl. Comput. Linguistics.

[2]  M R Quillian,et al.  Word concepts: a theory and simulation of some basic semantic capabilities. , 1967, Behavioral science.

[3]  H. Levesque,et al.  Readings in Knowledge Representation , 1985 .

[4]  James G. Schmolze Physics for Robots , 1986, AAAI.

[5]  Douglas B. Lenat,et al.  CYC: Using Common Sense Knowledge to Overcome Brittleness and Knowledge Acquisition Bottlenecks , 1986, AI Mag..

[6]  Ramanathan V. Guha,et al.  CYC: A Midterm Report , 1990, AI Mag..

[7]  M. R. Genesereth,et al.  Knowledge Interchange Format Version 3.0 Reference Manual , 1992, LICS 1992.

[8]  James A. Hendler,et al.  Readings in Planning , 1994 .

[9]  George A. Bekey,et al.  On autonomous robots , 1998, The Knowledge Engineering Review.

[10]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[11]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[12]  Kyoung-Yun Kim,et al.  Ontology-based assembly design and information sharing for collaborative product development , 2006, Comput. Aided Des..

[13]  Joris De Schutter,et al.  Constraint-based Task Specification and Estimation for Sensor-Based Robot Systems in the Presence of Geometric Uncertainty , 2007, Int. J. Robotics Res..

[14]  Anne-Françoise Cutting-Decelle,et al.  ISO 15531 MANDATE: A Product-process-resource based Approach for Managing Modularity in Production Management , 2007, Concurr. Eng. Res. Appl..

[15]  Klas Nilsson,et al.  Knowledge-Based Reconfiguration of Automation Systems , 2007, 2007 IEEE International Conference on Automation Science and Engineering.

[16]  I.M. Delamer,et al.  Automation 2.0: Current trends in factory automation , 2008, 2008 6th IEEE International Conference on Industrial Informatics.

[17]  Riccardo Muradore,et al.  Ontology for robotics: A roadmap , 2009, 2009 International Conference on Advanced Robotics.

[18]  Rainer Draht,et al.  Datenaustausch in der Anlagenplanung mit AutomationML , 2010 .

[19]  Anders Björkelund,et al.  A Knowledge Integration Framework for Robotics , 2010, ISR/ROBOTIK.

[20]  Klas Nilsson,et al.  Knowledge and Skill Representations for Robotized Production , 2011 .

[21]  Klas Nilsson,et al.  Declarative-knowledge-based reconfiguration of automation systems using a blackboard architecture , 2011, SCAI.

[22]  Anders Robertsson,et al.  On the integration of skilled robot motions for productivity in manufacturing , 2011, 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM).

[23]  Christos Georgakis,et al.  18th IFAC World Congress: Milano, Italy, August 28 to September 2, 2011 , 2013 .