Robust H∞ fuzzy control for a mini aviation engine speed regulation

Classical gain scheduling speed regulation method provides no guarantees for closed-loop system stability or performances for the full operating range of an engine due to the existence of nonlinear behavior, multiple operating conditions etc. In this work, a systematic fuzzy gain scheduling method is applied on speed control for a two-stroke, electronic fuel injection engine based on the Takagi-Sugeno (T-S) fuzzy system. A physical nonlinear model of the engine is presented and transformed into a fuzzy T-S model formulation. Based on the T-S model, the stabilization problem of the engine speed is studied, and a sufficient condition for the existence of controller with Hinfin attenuation and the design techniques are presented. The proposed control design is validated using both nonlinear off-line simulations and real-time hardware-in-the-loop (HIL) implementation. The results show that the proposed T-S fuzzy controller can meet the performance requirements for the unmanned helicopter engine use, namely racking performance, disturbance rejection and robustness.

[1]  Gao Pei-zhou Research on the Improvements of Performance of Mini-UAV's Engine by Electronically Controlled Gasoline Injection , 2004 .

[2]  Marcelo C. M. Teixeira,et al.  Stabilizing controller design for uncertain nonlinear systems using fuzzy models , 1999, IEEE Trans. Fuzzy Syst..

[3]  Huang Xiang-hua Fuzzy Adaptive PID Control for an Unmanned Helicopter Engine , 2005 .

[4]  J.A. Cook,et al.  Modeling of an internal combustion engine for control analysis , 1988, IEEE Control Systems Magazine.

[5]  F. Karray,et al.  Design of intelligent controllers for electronic speed regulation of a diesel engine , 1997, Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97.

[6]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[7]  Tor Arne Johansen,et al.  Speed control design for an experimental vehicle using a generalized gain scheduling approach , 2000, IEEE Trans. Control. Syst. Technol..

[8]  J. K. Hedrick,et al.  Robust Throttle Control of Automotive Engines: Theory and Experiment , 1996 .

[9]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[10]  H. Hanselmann Hardware-in-the-loop simulation testing and its integration into a CACSD toolset , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[11]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[12]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Kazuo Tanaka,et al.  Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities , 1996, IEEE Trans. Fuzzy Syst..

[14]  Kazuo Tanaka,et al.  Parallel distributed compensation of nonlinear systems by Takagi-Sugeno fuzzy model , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..