The HLA ligandome of oropharyngeal squamous cell carcinomas reveals shared tumour-exclusive peptides for semi-personalised vaccination

[1]  J. J. Lee,et al.  Phase II Clinical Trial of Neoadjuvant and Adjuvant Pembrolizumab in Resectable Local-Regionally Advanced Head and Neck Squamous Cell Carcinoma. , 2022, Clinical cancer research : an official journal of the American Association for Cancer Research.

[2]  A. Broeks,et al.  Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma , 2021, Nature Communications.

[3]  Silke D. Kühlwein,et al.  Erratum to: Analysis, identification and visualization of subgroups in genomics , 2021, Briefings in Bioinformatics.

[4]  C. Paweletz,et al.  Neoadjuvant and Adjuvant Nivolumab and Lirilumab in Patients with Recurrent, Resectable Squamous Cell Carcinoma of the Head and Neck , 2021, Clinical Cancer Research.

[5]  D. Kallogjeri,et al.  Enhanced pathologic tumor response with two cycles of neoadjuvant pembrolizumab in surgically resectable, locally advanced HPV-negative head and neck squamous cell carcinoma (HNSCC). , 2021 .

[6]  Hans A Kestler,et al.  Analysis, identification and visualization of subgroups in genomics , 2020, Briefings Bioinform..

[7]  David A Hildeman,et al.  PD1 blockade enhances K+ channel activity, Ca2+ signaling, and migratory ability in cytotoxic T lymphocytes of patients with head and neck cancer , 2020, Journal for ImmunoTherapy of Cancer.

[8]  H. Iro,et al.  Safety and efficacy of single cycle induction treatment with cisplatin/docetaxel/ durvalumab/tremelimumab in locally advanced HNSCC: first results of CheckRad-CD8 , 2020, Journal for ImmunoTherapy of Cancer.

[9]  R. Tishler,et al.  Neoadjuvant Nivolumab or Nivolumab Plus Ipilimumab in Untreated Oral Cavity Squamous Cell Carcinoma: A Phase 2 Open-Label Randomized Clinical Trial. , 2020, JAMA oncology.

[10]  J. Utikal,et al.  An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma , 2020, Nature.

[11]  Zachary L. Skidmore,et al.  Neoadjuvant and Adjuvant Pembrolizumab in Resectable Locally Advanced, Human Papillomavirus–Unrelated Head and Neck Cancer: A Multicenter, Phase II Trial , 2020, Clinical Cancer Research.

[12]  V. Grégoire,et al.  Pembrolizumab given concomitantly with chemoradiation and as maintenance therapy for locally advanced head and neck squamous cell carcinoma: KEYNOTE-412. , 2020, Future oncology.

[13]  H. Rammensee,et al.  Integrative -omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy , 2020, Genome Medicine.

[14]  Andrew R. Jones,et al.  Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools , 2019, Nucleic Acids Res..

[15]  D. Jäger,et al.  Patterns of antibody responses to nonviral cancer antigens in head and neck squamous cell carcinoma patients differ by human papillomavirus status , 2019, International journal of cancer.

[16]  Hung-Ming Wang,et al.  Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study , 2019, The Lancet.

[17]  H. Rammensee,et al.  The HLA Ligand Atlas. A resource of natural HLA ligands presented on benign tissues , 2019, bioRxiv.

[18]  D. Jäger,et al.  Antibody Responses to Cancer Antigens Identify Patients with a Poor Prognosis among HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinoma Patients , 2019, Clinical Cancer Research.

[19]  H. Rammensee,et al.  Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma , 2019, Genome medicine.

[20]  O. V. Matorin,et al.  Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study , 2019, The Lancet.

[21]  Young Uk Kim,et al.  Combining Immune Checkpoint Blockade and Tumor-Specific Vaccine for Patients With Incurable Human Papillomavirus 16–Related Cancer: A Phase 2 Clinical Trial , 2019, JAMA oncology.

[22]  Chih-Chiang Tsou,et al.  The HLA ligandome landscape of chronic myeloid leukemia delineates novel T-cell epitopes for immunotherapy. , 2018, Blood.

[23]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[24]  Alessandro Sette,et al.  The Immune Epitope Database (IEDB): 2018 update , 2018, Nucleic Acids Res..

[25]  J. Castle,et al.  Actively personalized vaccination trial for newly diagnosed glioblastoma , 2018, Nature.

[26]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[27]  S. Rosenberg,et al.  Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. , 2018, JCI insight.

[28]  H. Rammensee,et al.  The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cell-based immunotherapy , 2018, Acta Neuropathologica.

[29]  S. Madhavan,et al.  viGEN: An Open Source Pipeline for the Detection and Quantification of Viral RNA in Human Tumors , 2017, bioRxiv.

[30]  Oliver Kohlbacher,et al.  The immunopeptidomic landscape of ovarian carcinomas , 2017, Proceedings of the National Academy of Sciences.

[31]  S. H. van der Burg,et al.  Intratumoral HPV16-Specific T Cells Constitute a Type I–Oriented Tumor Microenvironment to Improve Survival in HPV16-Driven Oropharyngeal Cancer , 2017, Clinical Cancer Research.

[32]  B. Howie,et al.  Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer , 2017, Science.

[33]  C. Compton,et al.  The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population‐based to a more “personalized” approach to cancer staging , 2017, CA: a cancer journal for clinicians.

[34]  Brian O'Sullivan,et al.  Head and neck cancers—major changes in the American Joint Committee on cancer eighth edition cancer staging manual , 2017, CA: a cancer journal for clinicians.

[35]  J. Radford Nivolumab for recurrent squamous-cell carcinoma of the head and neck , 2016, BDJ.

[36]  Nicolai J. Birkbak,et al.  Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade , 2016, Science.

[37]  C. Melief,et al.  Vaccines for established cancer: overcoming the challenges posed by immune evasion , 2016, Nature Reviews Cancer.

[38]  Morten Nielsen,et al.  Gapped sequence alignment using artificial neural networks: application to the MHC class I system , 2016, Bioinform..

[39]  Oliver Kohlbacher,et al.  The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy. , 2015, Blood.

[40]  J. Wolchok,et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma. , 2014, The New England journal of medicine.

[41]  R. Emerson,et al.  PD-1 blockade induces responses by inhibiting adaptive immune resistance , 2014, Nature.

[42]  J. Mariette,et al.  jvenn: an interactive Venn diagram viewer , 2014, BMC Bioinformatics.

[43]  S. H. van der Burg,et al.  Alterations in classical and nonclassical HLA expression in recurrent and progressive HPV‐induced usual vulvar intraepithelial neoplasia and implications for immunotherapy , 2014, International journal of cancer.

[44]  C Gabriel,et al.  HLA typing by next-generation sequencing - getting closer to reality. , 2014, Tissue antigens.

[45]  S. H. van der Burg,et al.  HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial , 2013, Journal of Translational Medicine.

[46]  H. Rammensee,et al.  HLA ligandome tumor antigen discovery for personalized vaccine approach , 2013, Expert review of vaccines.

[47]  S. Stevanović,et al.  Biochemical large-scale identification of MHC class I ligands. , 2013, Methods in molecular biology.

[48]  H. Rammensee,et al.  Natural HLA class I ligands from glioblastoma: extending the options for immunotherapy , 2013, Journal of Neuro-Oncology.

[49]  S. H. van der Burg,et al.  Systemic and local human papillomavirus 16‐specific T‐cell immunity in patients with head and neck cancer , 2012, International journal of cancer.

[50]  J. M. van der Hulst,et al.  The detection of circulating human papillomavirus‐specific T cells is associated with improved survival of patients with deeply infiltrating tumors , 2011, International journal of cancer.

[51]  Marc S. Cortese,et al.  HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. , 2010, Virology.

[52]  K. Ang,et al.  Human papillomavirus and survival of patients with oropharyngeal cancer. , 2010, The New England journal of medicine.

[53]  M. Tan,et al.  Oropharynx cancer (OPC) in TAX 324: Human papillomavirus (HPV) and survival. , 2010 .

[54]  S. H. van der Burg,et al.  Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. , 2009, The New England journal of medicine.

[55]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[56]  W. Alkema,et al.  BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams , 2008, BMC Genomics.

[57]  William Stafford Noble,et al.  Semi-supervised learning for peptide identification from shotgun proteomics datasets , 2007, Nature Methods.

[58]  L. Mariani,et al.  High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[59]  C. Arsov,et al.  T cells specific for HPV16 E7 epitopes in patients with squamous cell carcinoma of the oropharynx , 2006, International journal of cancer.

[60]  John Sidney,et al.  Predicting population coverage of T-cell epitope-based diagnostics and vaccines , 2006, BMC Bioinformatics.

[61]  M. Campo,et al.  E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I , 2005, International journal of cancer.

[62]  D. Sidransky,et al.  Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. , 2000, Journal of the National Cancer Institute.

[63]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[64]  S. Syrjänen,et al.  Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. , 1983, International journal of oral surgery.