A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction

We present a new cell-centered multi-material arbitrary Lagrangian-Eulerian (ALE) scheme to solve the compressible gas dynamics equations on two-dimensional unstructured grid. Our ALE method is of the explicit time-marching Lagrange plus remap type. Namely, it involves the following three phases: a Lagrangian phase wherein the flow is advanced using a cell-centered scheme; a rezone phase in which the nodes of the computational grid are moved to more optimal positions; a cell-centered remap phase which consists of interpolating conservatively the Lagrangian solution onto the rezoned grid. The multi-material modeling utilizes either concentration equations for miscible fluids or the Volume Of Fluid (VOF) capability with interface reconstruction for immiscible fluids. The main original feature of this ALE scheme lies in the introduction of a new mesh relaxation procedure which keeps the rezoned grid as close as possible to the Lagrangian one. In this formalism, the rezoned grid is defined as a convex combination between the Lagrangian grid and the grid resulting from condition number smoothing. This convex combination is constructed through the use of a scalar parameter which is a scalar function of the invariants of the Cauchy-Green tensor over the Lagrangian phase. Regarding the cell-centered remap phase, we employ two classical methods based on a partition of the rezoned cell in terms of its overlap with the Lagrangian cells. The first one is a simplified swept face-based method whereas the second one is a cell-intersection-based method. Our multi-material ALE methodology is assessed through several demanding two-dimensional tests. The corresponding numerical results provide a clear evidence of the robustness and the accuracy of this new scheme.

[1]  C. Zemach,et al.  CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Revision 1 , 1992 .

[2]  Mikhail J. Shashkov,et al.  Reconstruction of multi-material interfaces from moment data , 2008, J. Comput. Phys..

[3]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[4]  Jérôme Breil,et al.  Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..

[5]  A. Bower Applied Mechanics of Solids , 2009 .

[6]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[7]  P. Knupp,et al.  Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods , 2002 .

[8]  R. Garimella,et al.  Untangling of 2D meshes in ALE simulations , 2004 .

[9]  Mikhail Shashkov,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1574 Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes ‡ , 2022 .

[10]  J. Glinsky,et al.  The general. , 1982, Nursing.

[11]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[12]  Rainald Löhner,et al.  On the computation of multi-material flows using ALE formulation , 2004 .

[13]  Philippe Hoch,et al.  An Arbitrary Lagrangian-Eulerian strategy to solve compressible fluid flows , 2009 .

[14]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..

[15]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[16]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[17]  John K. Dukowicz,et al.  A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .

[18]  John K. Dukowicz,et al.  A general topology Godunov method , 1989 .

[19]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[20]  Rao V. Garimella,et al.  A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .

[21]  Hyung Taek Ahn,et al.  Multi-material interface reconstruction on generalized polyhedral meshes , 2007, J. Comput. Phys..

[22]  J. Haas,et al.  Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.

[23]  L. Margolin Introduction to “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds” , 1997 .

[24]  A. J. Barlow,et al.  A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .

[25]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[26]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[27]  Patrick M. Knupp,et al.  Fundamentals of Grid Generation , 2020 .

[28]  M. Shashkov,et al.  A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based on the Riemann problem , 2010 .

[29]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[30]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[31]  Jérôme Breil,et al.  A cell‐centred arbitrary Lagrangian–Eulerian (ALE) method , 2008 .

[32]  Boniface Nkonga,et al.  On the conservative and accurate CFD approximations for moving meshes and moving boundaries , 2000 .

[33]  Len G. Margolin,et al.  Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .

[34]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[35]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[36]  Andrew Barlow,et al.  A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations , 2007, J. Comput. Phys..

[37]  Kiumars Mazaheri,et al.  Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms , 2009 .

[38]  Antonio Huerta,et al.  Chapter 14 Arbitrary Lagrangian-Eulerian Methods , 2004 .

[39]  Mikhail Shashkov,et al.  Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity , 2008 .

[40]  Niels Bohr,et al.  INERTIAL CONFINEMENT FUSION , 2006 .

[41]  J. Glimm,et al.  A critical analysis of Rayleigh-Taylor growth rates , 2001 .

[42]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[43]  Joseph Falcovitz,et al.  Generalized Riemann Problems in Computational Fluid Dynamics , 2003 .

[44]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[45]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[46]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[47]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .