A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction
暂无分享,去创建一个
[1] C. Zemach,et al. CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Revision 1 , 1992 .
[2] Mikhail J. Shashkov,et al. Reconstruction of multi-material interfaces from moment data , 2008, J. Comput. Phys..
[3] P. Knupp. Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .
[4] Jérôme Breil,et al. Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..
[5] A. Bower. Applied Mechanics of Solids , 2009 .
[6] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[7] P. Knupp,et al. Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods , 2002 .
[8] R. Garimella,et al. Untangling of 2D meshes in ALE simulations , 2004 .
[9] Mikhail Shashkov,et al. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1574 Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes ‡ , 2022 .
[10] J. Glinsky,et al. The general. , 1982, Nursing.
[11] Qiang Zhang,et al. Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..
[12] Rainald Löhner,et al. On the computation of multi-material flows using ALE formulation , 2004 .
[13] Philippe Hoch,et al. An Arbitrary Lagrangian-Eulerian strategy to solve compressible fluid flows , 2009 .
[14] Raphaël Loubère,et al. ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..
[15] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[16] Brian Mirtich,et al. Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.
[17] John K. Dukowicz,et al. A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .
[18] John K. Dukowicz,et al. A general topology Godunov method , 1989 .
[19] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[20] Rao V. Garimella,et al. A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .
[21] Hyung Taek Ahn,et al. Multi-material interface reconstruction on generalized polyhedral meshes , 2007, J. Comput. Phys..
[22] J. Haas,et al. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.
[23] L. Margolin. Introduction to “An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds” , 1997 .
[24] A. J. Barlow,et al. A compatible finite element multi‐material ALE hydrodynamics algorithm , 2008 .
[25] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[26] James J. Quirk,et al. On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.
[27] Patrick M. Knupp,et al. Fundamentals of Grid Generation , 2020 .
[28] M. Shashkov,et al. A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based on the Riemann problem , 2010 .
[29] Bruno Després,et al. Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .
[30] L YoungsD,et al. Time-dependent multi-material flow with large fluid distortion. , 1982 .
[31] Jérôme Breil,et al. A cell‐centred arbitrary Lagrangian–Eulerian (ALE) method , 2008 .
[32] Boniface Nkonga,et al. On the conservative and accurate CFD approximations for moving meshes and moving boundaries , 2000 .
[33] Len G. Margolin,et al. Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .
[34] Thomas J. R. Hughes,et al. Encyclopedia of computational mechanics , 2004 .
[35] D. Durran. Numerical Methods for Fluid Dynamics , 2010 .
[36] Andrew Barlow,et al. A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations , 2007, J. Comput. Phys..
[37] Kiumars Mazaheri,et al. Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms , 2009 .
[38] Antonio Huerta,et al. Chapter 14 Arbitrary Lagrangian-Eulerian Methods , 2004 .
[39] Mikhail Shashkov,et al. Extension of efficient, swept-integration-based conservative remapping method for meshes with changing connectivity , 2008 .
[40] Niels Bohr,et al. INERTIAL CONFINEMENT FUSION , 2006 .
[41] J. Glimm,et al. A critical analysis of Rayleigh-Taylor growth rates , 2001 .
[42] Patrick M. Knupp,et al. Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..
[43] Joseph Falcovitz,et al. Generalized Riemann Problems in Computational Fluid Dynamics , 2003 .
[44] M. Shashkov,et al. The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .
[45] A. M. Winslow. Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .
[46] Timothy J. Barth,et al. The design and application of upwind schemes on unstructured meshes , 1989 .
[47] Gregory A. Moses,et al. Inertial confinement fusion , 1982 .