Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester

The authors analyze a piezoelectric energy harvester as an electro-mechanically coupled system. The energy harvester consists of a piezoelectric bimorph with a concentrated mass attached at one end, called the harvesting structure, an electric circuit for energy storage, and a rectifier that converts the AC output of the harvesting structure into a DC input for the storage circuit. The piezoelectric bimorph is assumed to be driven into flexural vibration by an ambient acoustic source to convert the mechanical energies into electric energies. The analysis indicates that the performance of this harvester, measured by the power density, is characterized by three important non-dimensional parameters, i.e., the non-dimensional inductance of the storage circuit, the non-dimensional aspect ratio (length/thickness) and the non-dimensional end mass of the harvesting structure. The numerical results show that: (1) the power density can be optimized by varying the non-dimensional inductance for each fixed non-dimensional aspect ratio with a fixed non-dimensional end mass; and (2) for a fixed non-dimensional inductance, the power density is maximized if the non-dimensional aspect ratio and the non-dimensional end mass are so chosen that the harvesting structure, consisting of both the piezoelectric bimorph and the end mass attached, resonates at the frequency of the ambient acoustic source.

[1]  N. G. Stephen,et al.  On energy harvesting from ambient vibration , 2006 .

[2]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[3]  T. Senjuntichai,et al.  Electroelastic field of a piezoelectric annular finite cylinder , 2005 .

[4]  Paul Gonnard,et al.  Modelling of a cantilever non-symmetric piezoelectric bimorph , 2003 .

[5]  D. Inman,et al.  Optimal Sizes and Placements of Piezoelectric Actuators and Sensors for an Inflated Torus , 2003 .

[6]  Li Zhang,et al.  Passive charge modulation for a wireless pressure sensor , 2006, IEEE Sensors Journal.

[7]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[8]  Dimitris A. Saravanos,et al.  Small-Amplitude Free-Vibration Analysis of Piezoelectric Composite Plates Subject to Large Deflections and Initial Stresses , 2006 .

[9]  WangCheng,et al.  COMBINED DAMAGE FRACTURE CRITERIA FOR PIEZOELECTRIC CERAMICS , 2005 .

[10]  Heath Hofmann,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2003 .

[11]  Yang Xinhua,et al.  Analysis of damage near a conducting crack in a piezoelectric ceramic , 2003 .

[12]  Jiashi Yang,et al.  Thickness vibrations of rotating piezoelectric plates , 1998 .

[13]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[14]  Caihua Xiong,et al.  An analysis of a cylindrical thin shell as a piezoelectric transformer , 2007 .

[15]  Mani B. Srivastava,et al.  Emerging techniques for long lived wireless sensor networks , 2006, IEEE Communications Magazine.

[16]  R. Duggirala,et al.  Pervasive power: a radioisotope-powered piezoelectric generator , 2005, IEEE Pervasive Computing.

[17]  Francois Costa,et al.  Energy harvesting from vibration using a piezoelectric membrane , 2005 .

[18]  Huan Xue,et al.  Nonlinear behavior of a piezoelectric power harvester near resonance , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  T. C. T. Ting,et al.  Piezoelectric solid with an elliptic inclusion or hole , 1996 .

[20]  Jiashi Yang,et al.  Performance of a piezoelectric bimorph for scavenging vibration energy , 2005 .

[21]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[22]  T.G. Engel,et al.  Electrical power generation characteristics of piezoelectric generator under quasi-static and dynamic stress conditions , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  C. Keawboonchuay,et al.  Scaling relationships and maximum peak power generation in a piezoelectric pulse generator , 2004, IEEE Transactions on Plasma Science.

[24]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[25]  Ser Tong Quek,et al.  Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator , 2000 .

[26]  Heath Hofmann,et al.  Damping as a result of piezoelectric energy harvesting , 2004 .

[27]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[28]  King-Jet Tseng,et al.  Modeling and analysis of dual-output piezoelectric transformer operating at thickness-shear vibration mode , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  Jiashi Yang,et al.  A low frequency piezoelectric power harvester using a spiral-shaped bimorph , 2006 .

[30]  A. von Jouanne,et al.  Novel power conditioning circuits for piezoelectric micropower generators , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[31]  Romesh C. Batra,et al.  Cylindrical Bending of Laminated Plates with Distributed and Segmented Piezoelectric Actuators/Sensors , 2000 .

[32]  Romesh C. Batra,et al.  Analysis of piezoelectric bimorphs and plates with segmented actuators , 2001 .

[33]  Yuantai Hu,et al.  Performance of a piezoelectric harvester in thickness-stretch mode of a plate. , 2005, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[34]  Adrien Badel,et al.  A comparison between several vibration-powered piezoelectric generators for standalone systems , 2006 .

[35]  Huan Xue,et al.  A spiral-shaped harvester with an improved harvesting element and an adaptive storage circuit , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  Sung Kyu Ha,et al.  Analysis of the asymmetric triple-layered piezoelectric bimorph using equivalent circuit models , 2001 .

[37]  William W. Clark,et al.  Piezoelectric Energy Harvesting with a Clamped Circular Plate: Analysis , 2005 .

[38]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[39]  Siak Piang Lim,et al.  Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications , 2004 .

[40]  K. Tai,et al.  Topology optimization of piezoelectric sensors/actuators for torsional vibration control of composite plates , 2006 .

[41]  J. Söderkvist Dynamic behavior of a piezoelectric beam , 1991 .

[42]  Amâncio Fernandes,et al.  Analytical and numerical approaches to piezoelectric bimorph , 2003 .

[43]  御子柴宣夫 B. A. Auld : Acoustic Fields and Waves in Solids, Vol. 1 and 2, John Wiley, New York and London, 1973, 2 vols., 23.5×16cm. , 1974 .

[44]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply , 2002 .

[45]  R. Smith,et al.  Vibration of micromachined circular piezoelectric diaphragms , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.