High-performance computing using a reconfigurable accelerator

This paper introduces the MoM-3 as a reconfigurable accelerator for high performance computing at a moderate price. By using a new machine paradigm to trigger the operations in the MoM-3, this accelerator is especially suited to scientific algorithms, where the hardware structure can be configured to match the structure of the algorithm. The MoM-3 efficiently uses reconfigurable logic devices to provide a fine-grain parallelism, and multiple address generators to have the complete memory bandwidth free for data transfers (instead of fetching address computing instructions). Speed-up factors up to 82, compared to state-of-the-art workstations, are demonstrated by means of an Ising spin system simulation example. Adding the MoM-3 as an accelerator allows to achieve supercomputer performance from a low-cost workstation.