Observer-Dependence of Chaos Under Lorentz and Rindler Transformations

The behavior of Lyapunov exponents λ and dynamical entropies h, whose positivity characterizes chaotic motion, under Lorentz and Rindler transformations is studied. Under Lorentz transformations, λ and h are changed, but their positivity is preserved for chaotic systems. Under Rindler transformations, λ and h are changed in such a way that systems, which are chaotic for an accelerated Rindler observer, can be nonchaotic for an inertial Minkowski observer. Therefore, the concept of chaos is observer-dependent.