Observer-Dependence of Chaos Under Lorentz and Rindler Transformations
暂无分享,去创建一个
[1] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[2] The Mixmaster universe is chaotic , 1996, gr-qc/9605029.
[3] Hans Halvorson,et al. Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory , 2000, The British Journal for the Philosophy of Science.
[4] Toward an invariant measure of chaotic behaviour in general relativity , 1993 .
[5] October I. Physical Review Letters , 2022 .
[6] C. Caramanis. What is ergodic theory , 1963 .
[7] S. V. Fomin,et al. Ergodic Theory , 1982 .
[8] Physics Letters , 1962, Nature.
[9] The Mixmaster universe: A Chaotic Farey tale , 1996, gr-qc/9612066.
[10] Michael C. Mackey,et al. Chaos, Fractals, and Noise , 1994 .
[11] W. Unruh. Notes on black-hole evaporation , 1976 .
[12] Ralf Eichhorn,et al. Transformation invariance of Lyapunov exponents , 2001 .
[13] Zhao Zheng,et al. Hawking-Unruh effect on thermal equilibrium state , 1996 .
[14] S. Hawking,et al. Black hole explosions? , 1974, Nature.
[15] V. Belinskiǐ,et al. A General Solution of the Einstein Equations with a Time Singularity , 1982 .
[16] J. Barrow. Chaotic behaviour in general relativity , 1982 .
[17] P. Lugol. Annalen der Physik , 1906 .
[18] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.