A combined approach of partial least squares and fuzzy c-means clustering for the monitoring of an activated-sludge waste-water treatment plant

[1]  P. Minkkinen,et al.  Partial least squares modeling of an activated sludge plant: A case study , 1997 .

[2]  Klaus Danzer,et al.  Fuzzy cluster analysis by simulated annealing , 1996 .

[3]  Stefano Marsili-Libelli,et al.  Adaptive fuzzy pattern recognition in the anaerobic digestion process , 1996, Pattern Recognit. Lett..

[4]  Rajesh N. Davé,et al.  Validating fuzzy partitions obtained through c-shells clustering , 1996, Pattern Recognit. Lett..

[5]  Chris Aldrich,et al.  Visualisation of plant disturbances using self-organising maps , 1996 .

[6]  J. Macgregor,et al.  Experiences with industrial applications of projection methods for multivariate statistical process control , 1996 .

[7]  J. Paris,et al.  A Composite Representation of Pulp Quality , 1995 .

[8]  Luis F. Chaparro,et al.  Hidden process modeling , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[9]  Theodora Kourti,et al.  Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .

[10]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[11]  W. Harmon Ray,et al.  Dynamic PLS modelling for process control , 1993 .

[12]  Shokri Z. Selim,et al.  A global algorithm for the fuzzy clustering problem , 1993, Pattern Recognit..

[13]  B. Skagerberg,et al.  Multivariate data analysis applied to low-density polyethylene reactors , 1992 .

[14]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[15]  Paul Geladi,et al.  An example of 2-block predictive partial least-squares regression with simulated data , 1986 .