Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes.

We show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.

[1]  G. Burkard,et al.  Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. , 2011, Physical review letters.

[2]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[3]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[4]  G. Rastelli,et al.  Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current. , 2014, Physical review letters.

[5]  P. Zoller,et al.  Continuous mode cooling and phonon routers for phononic quantum networks , 2012, 1205.7008.

[6]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[7]  H. V. D. van der Zant,et al.  Bending-mode vibration of a suspended nanotube resonator. , 2006, Nano letters.

[8]  J. Güttinger,et al.  Nanotube mechanical resonators with quality factors of up to 5 million. , 2014, Nature nanotechnology.

[9]  M. Feng,et al.  Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilever , 2009, 0907.5550.

[10]  S. Shikata,et al.  Negatively charged nitrogen-vacancy centers in a 5 nm thin 12C diamond film. , 2013, Nano letters.

[11]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[12]  Vibhor Singh,et al.  Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. , 2014, Nature nanotechnology.

[13]  F. Nori,et al.  Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator , 2012, 1211.1827.

[14]  W. Wernsdorfer,et al.  Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. , 2013, Nature nanotechnology.

[15]  P. Appel,et al.  Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. , 2014, Physical review letters.

[16]  Guanxiong Liu,et al.  Graphene-on-diamond devices with increased current-carrying capacity: carbon sp2-on-sp3 technology. , 2012, Nano letters.

[17]  Z. Kurucz,et al.  Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose-Einstein condensate. , 2013, Physical review letters.

[18]  A. Sukhov,et al.  Entanglement between nitrogen vacancy spins in diamond controlled by a nanomechanical resonator , 2013, 1301.4256.

[19]  Shimon Kolkowitz,et al.  Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit , 2012, Science.

[20]  J. Plaza,et al.  Strong coupling between mechanical modes in a nanotube resonator. , 2012, Physical review letters.

[21]  M. Plenio,et al.  Hybrid sensors based on colour centres in diamond and piezoactive layers , 2014, Nature Communications.

[22]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[23]  M. Burek,et al.  Nanomechanical resonant structures in single-crystal diamond , 2013, 1309.1834.

[24]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[25]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[26]  Xiang‐Bin Wang,et al.  Strong coupling between two distant electronic spins via a nanomechanical resonator , 2010 .

[27]  B. Myers,et al.  High quality factor single-crystal diamond mechanical resonators , 2012, 1206.4363.

[28]  S. Cronin,et al.  Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. , 2014, Nano letters.

[29]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[30]  Jiangfeng Du,et al.  High-resolution vector microwave magnetometry based on solid-state spins in diamond , 2015, Nature Communications.

[31]  B. Myers,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature Communications.

[32]  J. Güttinger,et al.  Coupling graphene mechanical resonators to superconducting microwave cavities. , 2014, Nano letters.

[33]  S. Bennett,et al.  Phonon cooling and lasing with nitrogen-vacancy centers in diamond , 2013, 1306.5915.

[34]  Y. Blanter,et al.  Carbon nanotubes as nanoelectromechanical systems , 2003 .

[35]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[36]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[37]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[38]  Quan Wang,et al.  Wave propagation in carbon nanotubes via nonlocal continuum mechanics , 2005 .

[39]  S. Barrett,et al.  Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond , 2009, 0912.3586.

[40]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[41]  P. Domokos,et al.  Quantum galvanometer by interfacing a vibrating nanowire and cold atoms. , 2012, Nano letters.

[42]  G. Navickaite,et al.  Electro-mechanical control of an optical emitter using graphene , 2015, 1504.08275.

[43]  O. Arcizet,et al.  Observation of a phononic Mollow triplet in a multimode hybrid spin-nanomechanical system , 2015, Nature Communications.

[44]  Sungkun Hong,et al.  Coherent, mechanical control of a single electronic spin. , 2012, Nano letters.

[45]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[46]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[47]  M. V. Gurudev Dutt,et al.  Strong Magnetic Coupling Between an Electronic Spin Qubit and a Mechanical Resonator , 2008, 0806.3606.

[48]  F. Nori,et al.  Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers , 2013, 1301.1504.

[49]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[50]  Xiaobo Zhu,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2012 .

[51]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[52]  Maciej Lewenstein,et al.  Harnessing vacuum forces for quantum sensing of graphene motion. , 2013, Physical review letters.

[53]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[54]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[55]  D. Hunger,et al.  Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip. , 2007, Physical Review Letters.

[56]  L. Childress,et al.  Supporting Online Material for , 2006 .

[57]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[58]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[59]  P. Zoller,et al.  Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. , 2013, Physical review letters.

[60]  W. Munro,et al.  Improving the coherence time of a quantum system via a coupling to a short-lived system. , 2015, Physical Review Letters.

[61]  Zhang-qi Yin,et al.  Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling , 2013, 1305.1701.

[62]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[63]  Yun-Feng Xiao,et al.  Hybrid Quantum Device Based on N V Centers in Diamond Nanomechanical Resonators Plus Superconducting Waveguide Cavities , 2015, 1503.02437.

[64]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[65]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[66]  S. Roche,et al.  Quantum dephasing in carbon nanotubes due to electron-phonon coupling. , 2005, Physical review letters.

[67]  R Hanson,et al.  Polarization and readout of coupled single spins in diamond. , 2006, Physical review letters.

[68]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[69]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[70]  S. Bhave,et al.  Mechanical spin control of nitrogen-vacancy centers in diamond. , 2013, Physical review letters.

[71]  Abdelouahed Tounsi,et al.  Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity , 2008 .