Sequent calculus proof systems for inductive definitions
暂无分享,去创建一个
[1] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[2] G. Gentzen. Untersuchungen über das logische Schließen. II , 1935 .
[3] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[4] Leon Henkin,et al. Completeness in the theory of types , 1950, Journal of Symbolic Logic.
[5] Gaisi Takeuti,et al. On a generalized logic calculus , 1953 .
[6] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[7] Stig Kanger,et al. A Simplified Proof Method for Elementary Logic , 1959 .
[8] Hao Wang,et al. Toward Mechanical Mathematics , 1960, IBM J. Res. Dev..
[9] W. W. Tait,et al. A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic , 1966 .
[10] William W. Tait,et al. Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.
[11] Jr. Hartley Rogers. Theory of Recursive Functions and Effective Computability , 1969 .
[12] W. A. Howard. Assignment of Ordinals to Terms for Primitive Recursive Functionals of Finite Type , 1970 .
[13] G. Kreisel. The Collected Papers of Gerhard Gentzen , 1971 .
[14] P. Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions , 1971 .
[15] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[16] Yiannis N. Moschovakis,et al. Elementary induction on abstract structures , 1974 .
[17] Peter Aczel,et al. An Introduction to Inductive Definitions , 1977 .
[18] Jon Barwise,et al. An Introduction to First-Order Logic , 1977 .
[19] W. Buchholz. Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies , 1981 .
[20] Dexter Kozen,et al. RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .
[21] Bruno Courcelle,et al. Fundamental Properties of Infinite Trees , 1983, Theoretical Computer Science.
[22] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[23] Valentin F. Turchin,et al. The concept of a supercompiler , 1986, TOPL.
[24] Pierre Wolper,et al. An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.
[25] Andrew Stevens. A Rational Reconstruction of Boyer and Moore's Technique for Constructing Induction Formulas , 1988, ECAI.
[26] J. Girard. Proof Theory and Logical Complexity , 1989 .
[27] S. Kleene,et al. Kurt Gödel: Collected Works Vol. Ii , 1990 .
[28] Wolfgang Thomas,et al. Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.
[29] Peter Schroeder-Heister. Cut Elimination for Logics with Definitional Reflection , 1990, Nonclassical Logics and Information Processing.
[30] Frank van Harmelen,et al. The Oyster-Clam System , 1990, CADE.
[31] Robert S. Boyer,et al. Computational Logic , 1990, ESPRIT Basic Research Series.
[32] Richard Kaye. Models of Peano arithmetic , 1991, Oxford logic guides.
[33] Nils Klarlund,et al. Progress measures for complementation omega -automata with applications to temporal logic , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[34] David Walker,et al. Local Model Checking in the Modal mu-Calculus , 1991, Theor. Comput. Sci..
[35] Colin Stirling,et al. Local Model Checking for Infinite State Spaces , 1992, Theor. Comput. Sci..
[36] Christoph Walther,et al. Computing Induction Axioms , 1992, LPAR.
[37] Frank van Harmelen,et al. Rippling: A Heuristic for Guiding Inductive Proofs , 1993, Artif. Intell..
[38] Thierry Coquand,et al. Infinite Objects in Type Theory , 1994, TYPES.
[39] Peter Schroeder-Heister. Definitional Reflection and the Completion , 1993, ELP.
[40] Martin Protzen,et al. Lazy Generation of Induction Hypotheses , 1994, CADE.
[41] Stefano Berardi,et al. A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..
[42] Igor Walukiewicz,et al. Games for the mu-Calculus , 1996, Theor. Comput. Sci..
[43] Helmut Schwichtenberg,et al. Basic proof theory , 1996, Cambridge tracts in theoretical computer science.
[44] Dale Miller,et al. Reasoning in a logic with definitions and induction , 1997 .
[45] Michel Parigot,et al. Proofs of strong normalisation for second order classical natural deduction , 1997, Journal of Symbolic Logic.
[46] Andreas Weiermann. How is it that infinitary methods can be applied to finitary mathematics? Godel's T : a case study , 1998 .
[47] S. Buss. Handbook of proof theory , 1998 .
[48] Wolfgang Thomas. Complementation of Büchi Automata Revised , 1999, Jewels are Forever.
[49] Dieter Hutter,et al. System Description: inka 5.0 - A Logic Voyager , 1999, CADE.
[50] Dale Miller,et al. Cut-elimination for a logic with definitions and induction , 2000, Theor. Comput. Sci..
[51] Laurent Mauborgne,et al. An Incremental Unique Representation for Regular Trees , 2000, Nord. J. Comput..
[52] Igor Walukiewicz,et al. Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..
[53] F. Pfenning,et al. Automating the meta theory of deductive systems , 2000 .
[54] Ulrich Schöpp,et al. Formal Verification of Processes , 2001 .
[55] Sara Negri,et al. Structural proof theory , 2001 .
[56] Orna Kupferman,et al. Weak alternating automata are not that weak , 2001, TOCL.
[57] Joe B. Wells,et al. Cycle therapy: a prescription for fold and unfold on regular trees , 2001, PPDP '01.
[58] Neil D. Jones,et al. The size-change principle for program termination , 2001, POPL '01.
[59] Alan Bundy,et al. The Automation of Proof by Mathematical Induction , 1999, Handbook of Automated Reasoning.
[60] Antoni Malet,et al. The Mathematical Career of Pierre de Fermat, 1601-1665 , 2001 .
[61] Christian Urban,et al. Strong Normalisation of Cut-Elimination in Classical Logic , 1999, Fundam. Informaticae.
[62] Ulrich Schöpp,et al. Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes , 2002, FoSSaCS.
[63] Dilian Gurov,et al. µ-Calculus with Explicit Points and Approximations , 2002, J. Log. Comput..
[64] Mads Dam,et al. On the Structure of Inductive Reasoning: Circular and Tree-Shaped Proofs in the µ-Calculus , 2003, FoSSaCS.
[65] Claus-Peter Wirth,et al. How to Prove Inductive Theorems? QUODLIBET! , 2003, CADE.
[66] Mads Dam,et al. On global induction mechanisms in a µ-calculus with explicit approximations , 2003, RAIRO Theor. Informatics Appl..
[67] Alberto Momigliano,et al. Induction and Co-induction in Sequent Calculus , 2003, TYPES.
[68] Dale Miller,et al. A Proof Search Specification of the pi-Calculus , 2005, FGUC.
[69] J. Hannan,et al. A logical framework for reasoning about logical specifications , 2004 .
[70] Jacques D. Fleuriot,et al. Higher Order Rippling in IsaPlanner , 2004, TPHOLs.
[71] Claus-Peter Wirth,et al. Descente Infinie + Deduction , 2004, Log. J. IGPL.
[72] J. Gow,et al. The Dynamic Creation of Induction Rules Using Proof Planning , 2004 .
[73] Geoff W. Hamilton,et al. Poitín: Distilling Theorems From Conjectures , 2006, Calculemus.
[74] James Brotherston,et al. Cyclic Proofs for First-Order Logic with Inductive Definitions , 2005, TABLEAUX.
[75] Lucas Dixon,et al. A proof planning framework for Isabelle , 2006 .
[76] Orna Kupferman,et al. Büchi Complementation Made Tighter , 2006, Int. J. Found. Comput. Sci..
[77] James Brotherston,et al. Complete Sequent Calculi for Induction and Infinite Descent , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).
[78] I. Walukiewicz. Games for the -calculus , 2007 .
[79] Claus-Peter Wirth,et al. Progress in Computer-Assisted Inductive Theorem Proving by Human-Orientedness and Descente Infinie ? , 2006 .