PT-symmetric quantum electrodynamics and unitarity
暂无分享,去创建一个
[1] K. Milton,et al. $\mathcal{PT}$-Symmetric Quantum Electrodynamics—$\mathcal{PT}$QED , 2011 .
[2] C. Bender,et al. Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart , 2008, 0804.4190.
[3] C. Bender,et al. symmetric versus Hermitian formulations of quantum mechanics , 2005, hep-th/0511229.
[4] C. Bender,et al. PT-symmetric quantum electrodynamics , 2005, hep-th/0501180.
[5] C. Bender,et al. Extension of PT -Symmetric Quantum Mechanics to Quantum Field Theory with Cubic Interaction , 2004, hep-th/0402183.
[6] C. Bender,et al. Scalar quantum field theory with a complex cubic interaction. , 2004, Physical review letters.
[7] A. Mostafazadeh. Exact PT-symmetry is equivalent to Hermiticity , 2003, quant-ph/0304080.
[8] C. Bender,et al. All Hermitian Hamiltonians have parity , 2002, quant-ph/0211123.
[9] C. Bender,et al. Two-point Green's function in PT-symmetric theories , 2002, hep-th/0208136.
[10] C. Bender,et al. Complex extension of quantum mechanics. , 2002, Physical review letters.
[11] W. Landry. Particles , 2008, A Descriptive and Comparative Grammar of Western Old Japanese (2 vols).
[12] A. Mostafazadeh. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.
[13] A. Mostafazadeh. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.
[14] R. Tateo,et al. Supersymmetry and the spontaneous breakdown of Script PScript T symmetry , 2001, hep-th/0104119.
[15] R. Tateo,et al. Bethe Ansatz equations , and reality properties in PT-symmetric quantum mechanics , 2022 .
[16] C. Bender,et al. A nonunitary version of massless quantum electrodynamics possessing a critical point , 1999 .
[17] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[18] J. Dankovicová. Czech , 1997, Journal of the International Phonetic Association.
[19] C. Bender,et al. Nonperturbative calculation of symmetry breaking in quantum field theory , 1996, hep-th/9608048.
[20] J. Schwinger. Photon propagation function: spectral analysis of its asymptotic form. , 1974, Proceedings of the National Academy of Sciences of the United States of America.
[21] J. Bernstein,et al. Particles, Sources and Fields , 1971 .
[22] H. Lehmann. Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder , 1954 .
[23] K. Milton,et al. {PT}-Symmetric Quantum Electrodynamics---{PT}QED , 2011 .
[24] Ali Mostafazadeha. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002 .
[25] Ali Mostafazadeha. Pseudo-Hermiticity versus PT symmetry : The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001 .
[26] G. Källén. Quantum Electrodynamics , 1972 .
[27] A. Akhiezer,et al. Quantum electrodynamics : in English translation , 1957 .