Structural basis of the nucleosome transition during RNA polymerase II passage

Nucleosomal DNA transcription In eukaryotes, the basic chromatin unit nucleosome stalls RNA polymerase II (RNAPII) when it transcribes genetic information on DNA. Using cryo–electron microscopy, Kujirai et al. explored seven structures of the RNAPII-nucleosome complex, in which RNAPII pauses at four locations on the nucleosome. These serial snapshots of the RNAPII progression reveal the molecular mechanism of how RNAPII peels the nucleosomal DNA off the histone stepwise. Science, this issue p. 595 Cryo–electron microscopy structures of RNA polymerase II (RNAPII)–nucleosome complexes reveal how RNAPII transcribes nucleosomal DNA. Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo–electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(−6), SHL(−5), SHL(−2), and SHL(−1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(−1) complexes are bound to a “foreign” DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.

[1]  W. Baumeister,et al.  Structure of transcribing mammalian RNA polymerase II , 2016, Nature.

[2]  B. Franklin Pugh,et al.  Understanding nucleosome dynamics and their links to gene expression and DNA replication , 2017, Nature Reviews Molecular Cell Biology.

[3]  R. Roeder,et al.  The Human PAF1 Complex Acts in Chromatin Transcription Elongation Both Independently and Cooperatively with SII/TFIIS , 2010, Cell.

[4]  Henning Urlaub,et al.  GraFix: sample preparation for single-particle electron cryomicroscopy , 2008, Nature Methods.

[5]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[6]  R. Kornberg,et al.  Chromatin-remodeling for transcription , 2017, Quarterly Reviews of Biophysics.

[7]  V. Studitsky,et al.  Histone Sin mutations promote nucleosome traversal and histone displacement by RNA polymerase II , 2010, EMBO reports.

[8]  Steven Henikoff,et al.  Transcribing through the nucleosome. , 2014, Trends in biochemical sciences.

[9]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[10]  C. Bustamante,et al.  The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes , 2011, Nature Structural &Molecular Biology.

[11]  D. Tegunov,et al.  Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex , 2017, Nature Communications.

[12]  A. Emili,et al.  Identification and Characterization of Elf1, a Conserved Transcription Elongation Factor in Saccharomyces cerevisiae , 2022 .

[13]  Christopher M. Weber,et al.  Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. , 2014, Molecular cell.

[14]  S. Yokoyama,et al.  The ratcheted and ratchetable structural states of RNA polymerase underlie multiple transcriptional functions. , 2015, Molecular cell.

[15]  S. Darst,et al.  RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing. , 2018, Molecular cell.

[16]  H. Kurumizaka,et al.  Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome. , 2012, Biochemistry.

[17]  A. Weixlbaumer,et al.  Structural Basis of Transcriptional Pausing in Bacteria , 2013, Cell.

[18]  T. Umehara,et al.  Development of a hexahistidine-3× FLAG-tandem affinity purification method for endogenous protein complexes in Pichia pastoris , 2014, Journal of Structural and Functional Genomics.

[19]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[20]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[21]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[22]  H. Kurumizaka,et al.  Methods for Preparing Nucleosomes Containing Histone Variants. , 2018, Methods in molecular biology.

[23]  Andrew J. Bannister,et al.  Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription , 2014, eLife.

[24]  F. Winston,et al.  Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. , 1998, Genes & development.

[25]  J. Bednar,et al.  The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy. , 1999, Molecular cell.

[26]  Masaki Yamamoto,et al.  Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein , 2010, Nature.

[27]  Rafael Ayala,et al.  Structure and regulation of the human INO80–nucleosome complex , 2018, Nature.

[28]  P. Cramer,et al.  Structure of activated transcription complex Pol II–DSIF–PAF–SPT6 , 2018, Nature.

[29]  P. Cramer,et al.  Structure of a transcribing RNA polymerase II–DSIF complex reveals a multidentate DNA–RNA clamp , 2017, Nature Structural &Molecular Biology.

[30]  Andrew J. Bannister,et al.  Regulation of chromatin by histone modifications , 2011, Cell Research.

[31]  Patrick Cramer,et al.  Nucleosome-Chd1 structure and implications for chromatin remodelling , 2017, Nature.

[32]  Karl-Peter Hopfner,et al.  Structural basis for nucleosome remodeling by the INO80 complex , 2018, Nature.

[33]  Carlos Bustamante,et al.  Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II , 2009, Science.

[34]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[35]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[36]  G. Felsenfeld,et al.  A histone octamer can step around a transcribing polymerase without leaving the template , 1994, Cell.

[37]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[38]  E. Lindahl,et al.  Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2 , 2016, bioRxiv.

[39]  P. Cramer,et al.  Structural basis of RNA polymerase II backtracking, arrest and reactivation , 2011, Nature.

[40]  S. Yokoyama,et al.  Structure of the complete elongation complex of RNA polymerase II with basal factors , 2017, Science.

[41]  Vasily M Studitsky,et al.  Nature of the nucleosomal barrier to RNA polymerase II. , 2005, Molecular cell.

[42]  Claudio Nicolini,et al.  Chromatin Structure and Function , 1979, NATO Advanced Study Institutes Series.

[43]  E.Y.D. Chua,et al.  Crystal structures of nucleosome core particles containing the '601' strong positioning sequence. , 2010, Journal of molecular biology.

[44]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[45]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[46]  J. Widom,et al.  New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. , 1998, Journal of molecular biology.

[47]  T. Umehara,et al.  Crystal structure of RNA polymerase II from Komagataella pastoris. , 2017, Biochemical and biophysical research communications.