In-plane and out-of-plane buckling of arches made of FGM

The mechanical buckling of curved beams made of functionally graded materials is studies in this paper. The equilibrium and stability equations of curved beams under mechanical loads are derived. Using proper approximate functions for the displacement components, the stability equations are employed to obtain the related eigenvalues associated with the buckling load of the curved beam. Closed-form solutions are obtained for mechanical buckling of curved beams with doubly symmetric cross section subjected to uniform distributed radial load and pure bending moment. The results are validated with the known data in the literature for beams with isotropic materials.

[1]  N. S Trahair,et al.  FLEXURAL-TORSIONAL BUCKLING OF ARCHES , 1986 .

[2]  M. R. Eslami,et al.  Buckling of Functionally Graded Plates under In-plane Compressive Loading , 2002 .

[3]  Shyh-Rong Kuo,et al.  New Theory on Buckling of Curved Beams , 1991 .

[4]  M. R. Eslami,et al.  THERMOELASTIC BUCKLING OF THIN SPHERICAL SHELLS , 2001 .

[5]  Sung-Pil Chang,et al.  SPATIAL STABILITY ANALYSIS OF THIN-WALLED SPACE FRAMES , 1996 .

[6]  Mark A. Bradford,et al.  In-Plane Elastic Stability of Arches under a Central Concentrated Load , 2002 .

[7]  K. M. Liew,et al.  Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading , 2001 .

[8]  Myung-Won Suh,et al.  Spatial Stability of Nonsymmetric Thin-Walled Curved Beams. II: Numerical Approach , 2000 .

[9]  R. Shahsiah,et al.  THERMAL BUCKLING OF IMPERFECT CYLINDRICAL SHELLS , 2001 .

[10]  Chai H. Yoo,et al.  THIN-WALLED CURVED BEAMS. I: FORMULATION OF NONLINEAR EQUATIONS , 1994 .

[11]  Shyh-Rong Kuo,et al.  Static Stability of Curved Thin‐Walled Beams , 1986 .

[12]  Chai H. Yoo,et al.  Thin‐Walled Curved Beams. II: Analytical Solutions for Buckling of Arches , 1994 .

[13]  Nicholas S. Trahair,et al.  In-Plane Buckling and Design of Steel Arches , 1999 .

[14]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[15]  J. N. Reddy,et al.  THERMOMECHANICAL ANALYSIS OF FUNCTIONALLY GRADED CYLINDERS AND PLATES , 1998 .

[16]  S. Timoshenko Theory of Elastic Stability , 1936 .

[17]  M. Eslami,et al.  THERMOELASTIC STABILITY OF ORTHOTROPIC CIRCULAR PLATES , 2002 .

[18]  Yeong-Bin Yang,et al.  Use of Straight‐Beam Approach to Study Buckling of Curved Beams , 1991 .

[19]  George E. Blandford,et al.  Closure of "Thin-Walled Space Frames. I: Large-Deformation Analysis Theory" , 1991 .

[20]  M. R. Eslami,et al.  FIRST-ORDER-THEORY-BASED THERMOELASTIC STABILITY OF FUNCTIONALLY GRADED MATERIAL CIRCULAR PLATES , 2002 .

[21]  M. R. Eslami,et al.  THERMAL BUCKLING OF FUNCTIONALLY GRADED PLATES BASED ON HIGHER ORDER THEORY , 2002 .

[22]  Shyh-Rong Kuo,et al.  Effect of Curvature on Stability of Curved Beams , 1987 .

[23]  Sundaramoorthy Rajasekaran,et al.  Equations of Curved Beams , 1989 .

[24]  H. Langhaar Energy Methods in Applied Mechanics , 1962 .

[25]  Mark A. Bradford,et al.  Elastic Flexural-Torsional Buckling of Discretely Restrained Arches , 2002 .

[26]  M. R. Eslami,et al.  BUCKLING ANALYSIS OF CIRCULAR PLATES OF FUNCTIONALLY GRADED MATERIALS UNDER UNIFORM RADIAL COMPRESSION , 2002 .

[27]  M. R. Eslami,et al.  THERMAL BUCKLING OF FUNCTIONALLY GRADED PLATES BASED ON HIGHER ORDER THEORY , 2002 .

[28]  Yong-Lin Pi,et al.  Inelastic lateral buckling strength and design of steel arches , 2000 .

[29]  L. M. Zhang,et al.  THE PHYSICS OF METAL/CERAMIC FUNCTIONALLY GRADIENT MATERIALS, CERAMIC TRANSACTIONS , 1993 .

[30]  Sung-Pil Chang,et al.  Stability of Shear Deformable Thin-Walled Space Frames and Circular Arches , 1996 .

[31]  V. Vlasov Thin-walled elastic beams , 1961 .

[32]  J. N. Reddy,et al.  Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates , 1998 .

[33]  M. Koizumi THE CONCEPT OF FGM , 1993 .