Symbol Message Passing Decoding of Nonbinary Low-Density Parity-Check Codes

We present a novel decoding algorithm for q-ary low-density parity- check codes, termed symbol message passing. The proposed algorithm can be seen as a generalization of Gallager B and the binary message passing algorithm by Lechner et al. to q-ary codes. We derive density evolution equations for the q-ary symmetric channel, compute thresholds for a number of regular low-density parity-check code ensembles, and verify those by Monte Carlo simulations of long channel codes. The proposed algorithm shows performance advantages with respect to an algorithm of comparable complexity from the literature.

[1]  David Declercq,et al.  Fast decoding algorithm for LDPC over GF(2/sup q/) , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[2]  Troels Pedersen,et al.  Analysis and Design of Binary Message Passing Decoders , 2012, IEEE Transactions on Communications.

[3]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[4]  Gerhard Bauch,et al.  Decoding of Non-Binary LDPC Codes using the Information Bottleneck Method , 2019, ICC 2019 - 2019 IEEE International Conference on Communications (ICC).

[5]  K. Yamaguchi,et al.  Density Evolution for GF(q) LDPC Codes Via Simplified Message-passing Sets , 2007, 2007 Information Theory and Applications Workshop.

[6]  Liva Gianluigi,et al.  Bounds on the Error Probability of Raptor Codes , 2016 .

[7]  Fan Zhang,et al.  Analysis of Verification-Based Decoding on the q -ary Symmetric Channel for Large q , 2008, IEEE Trans. Inf. Theory.

[8]  Wei Wang,et al.  Low-density parity-check codes with rates very close to the capacity of the q-ary symmetric channel for large q , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[9]  John J. Metzner Majority-logic-like decoding of vector symbols , 1996, IEEE Trans. Commun..

[10]  Michael Mitzenmacher,et al.  Verification-based decoding for packet-based low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[11]  David Declercq,et al.  Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.

[12]  David Declercq,et al.  Finite Alphabet Iterative Decoders—Part I: Decoding Beyond Belief Propagation on the Binary Symmetric Channel , 2013, IEEE Transactions on Communications.

[13]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[14]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[15]  D. Declercq,et al.  Fast Decoding Algorithm for LDPC over GF(2q) , 2003 .

[16]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[17]  Fabian Steiner,et al.  Protograph-Based LDPC Code Design for Ternary Message Passing Decoding , 2018, ArXiv.

[18]  Paulo S. L. M. Barreto,et al.  MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes , 2013, 2013 IEEE International Symposium on Information Theory.

[19]  Bruce Levin,et al.  A Representation for Multinomial Cumulative Distribution Functions , 1981 .