On the Conjugation of Standard Morphisms
暂无分享,去创建一个
[1] Xavier Droubay,et al. Palindromes in the Fibonacci Word , 1995, Inf. Process. Lett..
[2] Jean-Paul Allouche,et al. Sur la complexite des suites in nies , 1994 .
[3] G. Rauzy,et al. Mots infinis en arithmétique , 1984, Automata on Infinite Words.
[4] Gustav A. Hedlund. A New Proof for a Metrically Transitive System , 1940 .
[5] Zhi-Xiong Wen,et al. LOCAL ISOMORPHISMS OF INVERTIBLE SUBSTITUTIONS , 1994 .
[6] S. Dulucq,et al. On the factors of the Sturmian sequences , 1990 .
[7] G. A. Hedlund,et al. Sturmian Minimal Sets , 1944 .
[8] Underwood Dudley. Elementary Number Theory , 1978 .
[9] Jean-Pierre Borel,et al. Quelques mots sur la droite projective réelle , 1993 .
[10] Tom C. Brown. A Characterization of the Quadratic Irrationals , 1991, Canadian Mathematical Bulletin.
[11] P. A. B. Pleasants,et al. Characterization of two-distance sequences , 1992 .
[12] A. Markoff. Sur une question de Jean Bernoulli , 1881 .
[13] Patrice Séébold,et al. Fibonacci Morphisms and Sturmian Words , 1991, Theor. Comput. Sci..
[14] M. Lothaire. Combinatorics on words: Bibliography , 1997 .
[15] Jack Bresenham,et al. Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..
[16] J. Berstel,et al. Morphismes de Sturm , 1994 .
[17] Caroline Series,et al. The geometry of markoff numbers , 1985 .
[18] Shin-ichi Yasutomi,et al. On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y] , 1990 .
[19] Filippo Mignosi,et al. Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..
[20] Filippo Mignosi,et al. Morphismes sturmiens et règles de Rauzy , 1993 .
[21] Filippo Mignosi,et al. On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..
[22] Enrico Bombieri,et al. Which distributions of matter diffract? An initial investigation , 1986 .
[23] K. Stolarsky,et al. Beatty Sequences, Continued Fractions, and Certain Shift Operators , 1976, Canadian Mathematical Bulletin.
[24] Jean Berstel,et al. A Characterization of Sturmian Morphisms , 1993, MFCS.
[25] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[26] P. Shiue,et al. Substitution invariant cutting sequences , 1993 .
[27] Tom C. Brown,et al. Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.
[28] Filippo Mignosi,et al. Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..
[29] Jean Berstel,et al. A Remark on Morphic Sturmian Words , 1994, RAIRO Theor. Informatics Appl..
[30] J. Allouche,et al. Quasicrystal Ising chain and automata theory , 1986 .
[31] Matti Linna,et al. The Equations h(w)=w-n in Binary Alphabets , 1984, Theor. Comput. Sci..
[32] Patrice Séébold. An effect solution to the DOL periodicity problem in the binary case , 1988, Bull. EATCS.
[33] Jean Berstel,et al. Recent Results on Sturmian Words , 1995, Developments in Language Theory.
[34] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .