On the Conjugation of Standard Morphisms

Let A={a, b} be an alphabet. An infinite word on A is Sturmian if it contains exactly n+1 distinct factors of length n for every integer n. A morphism f on A is Sturmian if f(x) is Sturmian whenever x is. A morphism on A is Standard if it is an element of the monoid generated by the two elementary morphisms E, which exchanges a and b, and φ, the Fibonacci morphism defined by φ(a)=ab and φ(b)=a. The set of Standard morphisms is a proper subset of the set of Sturmian morphisms. In the present paper, we give a characterization of Sturmian morphisms as conjugates of Standard ones. Sturmian words generated by Standard morphisms are characteristic words. The previous result allows to prove that a morphism f generates an infinite word having the same set of factors as a characteristic word generated by a Standard morphism g if and only if f is a conjugate of g.

[1]  Xavier Droubay,et al.  Palindromes in the Fibonacci Word , 1995, Inf. Process. Lett..

[2]  Jean-Paul Allouche,et al.  Sur la complexite des suites in nies , 1994 .

[3]  G. Rauzy,et al.  Mots infinis en arithmétique , 1984, Automata on Infinite Words.

[4]  Gustav A. Hedlund A New Proof for a Metrically Transitive System , 1940 .

[5]  Zhi-Xiong Wen,et al.  LOCAL ISOMORPHISMS OF INVERTIBLE SUBSTITUTIONS , 1994 .

[6]  S. Dulucq,et al.  On the factors of the Sturmian sequences , 1990 .

[7]  G. A. Hedlund,et al.  Sturmian Minimal Sets , 1944 .

[8]  Underwood Dudley Elementary Number Theory , 1978 .

[9]  Jean-Pierre Borel,et al.  Quelques mots sur la droite projective réelle , 1993 .

[10]  Tom C. Brown A Characterization of the Quadratic Irrationals , 1991, Canadian Mathematical Bulletin.

[11]  P. A. B. Pleasants,et al.  Characterization of two-distance sequences , 1992 .

[12]  A. Markoff Sur une question de Jean Bernoulli , 1881 .

[13]  Patrice Séébold,et al.  Fibonacci Morphisms and Sturmian Words , 1991, Theor. Comput. Sci..

[14]  M. Lothaire Combinatorics on words: Bibliography , 1997 .

[15]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[16]  J. Berstel,et al.  Morphismes de Sturm , 1994 .

[17]  Caroline Series,et al.  The geometry of markoff numbers , 1985 .

[18]  Shin-ichi Yasutomi,et al.  On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y] , 1990 .

[19]  Filippo Mignosi,et al.  Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..

[20]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[21]  Filippo Mignosi,et al.  On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..

[22]  Enrico Bombieri,et al.  Which distributions of matter diffract? An initial investigation , 1986 .

[23]  K. Stolarsky,et al.  Beatty Sequences, Continued Fractions, and Certain Shift Operators , 1976, Canadian Mathematical Bulletin.

[24]  Jean Berstel,et al.  A Characterization of Sturmian Morphisms , 1993, MFCS.

[25]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[26]  P. Shiue,et al.  Substitution invariant cutting sequences , 1993 .

[27]  Tom C. Brown,et al.  Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.

[28]  Filippo Mignosi,et al.  Infinite Words with Linear Subword Complexity , 1989, Theor. Comput. Sci..

[29]  Jean Berstel,et al.  A Remark on Morphic Sturmian Words , 1994, RAIRO Theor. Informatics Appl..

[30]  J. Allouche,et al.  Quasicrystal Ising chain and automata theory , 1986 .

[31]  Matti Linna,et al.  The Equations h(w)=w-n in Binary Alphabets , 1984, Theor. Comput. Sci..

[32]  Patrice Séébold An effect solution to the DOL periodicity problem in the binary case , 1988, Bull. EATCS.

[33]  Jean Berstel,et al.  Recent Results on Sturmian Words , 1995, Developments in Language Theory.

[34]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .