Limitations in current day lighting related solar concentration devices: A critical review

This study introduces the day lighting related solar concentration devices such as light pipes (or tubular daylight guidance systems), optical fibers for light transport, conventional solar concentrators and luminescent solar concentrators (LSC). The principles of study, advantages and disadvantages for application of these day lighting related devices have been explained. Daylight has a disadvantage of not being able to reach deeper areas in a building such as storerooms, basements and corridors and it also brings the heat gain with the light. Light pipes and optical fibers were expected to transfer daylight to unreached areas, but light pipes have their difficulties in wiring and the optical fiber needs a pointolite for the light transportation. Solar concentrators are only sensitive for the beam radiation and they function poorly in overcast sky conditions. Even under a clear sky condition, trackers are always needed for conventional solar concentrators. Static concentrators always come with a poor concentration rate without a tracker and the light concentrated by normal luminescent solar concentrators could not be transported by optical fibers to a remote place since the light produced by LSCs is not a pointolite. Future studies especially cross disciplinary researches on developing new solar concentration devices in mitigating those limitations as discussed in this study are highly recommended.

[1]  John S. Reynolds,et al.  Enhanced solar energy collection using reflector-solar thermal collector combinations , 1975 .

[2]  H. Guerrero G. V. Guinea J. Zoido Mechanical Properties of Polycarbonate Optical Fibers , 1998 .

[3]  Paul Schissel,et al.  Silvered-PMMA reflectors , 1994 .

[4]  Erik André,et al.  Daylighting by optical fiber , 2002 .

[5]  Hiroyuki Ohtsuka,et al.  Static concentrator photovoltaic module with prism array , 2001 .

[6]  L. A. Whitehead,et al.  New efficient light guide for interior illumination. , 1982, Applied optics.

[7]  Tariq Muneer,et al.  The value and estimated savings of light pipe use in windowless environments , 2004 .

[8]  B. Richards Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers , 2006 .

[9]  John A. Duffie,et al.  New materials in solar energy utilization , 1962 .

[10]  A Masoni,et al.  [A new principle]. , 1980, Giornale italiano di cardiologia.

[11]  V. S. Sundaram,et al.  Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications , 1990, IEEE Conference on Photovoltaic Specialists.

[12]  Dj Carter,et al.  A field study of tubular daylight guidance installations , 2006 .

[13]  F. Dimroth,et al.  Increasing the efficiency of fluorescent concentrator systems , 2009 .

[14]  Glenn Sweitzer Three advanced daylighting technologies for offices , 1993 .

[15]  Hari Singh Nalwa Polymer optical fibers , 2004 .

[16]  I. Luque-Heredia,et al.  FULLSPECTRUM: a new PV wave making more efficient use of the solar spectrum , 2005 .

[17]  Djamila Rouag-Saffidine Adoption of optical fibres or of optical light films in architecture , 1996 .

[18]  Guy R. Newsham,et al.  Effect of daylight saving time on lighting energy use: A literature review , 2008 .

[19]  V. Poulek,et al.  A new low-cost tracking ridge concentrator , 2000 .

[20]  M. Fontoynont,et al.  Day-lighting of underground spaces: design rules , 1996 .

[21]  Björn Karlsson,et al.  The impact of optical and thermal properties on the performance of flat plate solar collectors , 2000 .

[22]  Dj Carter Developments in tubular daylight guidance systems , 2004 .

[23]  Takaaki Ishigure,et al.  Present Prospect of Graded-Index Plastic Optical Fiber in Telecommunication , 1997 .

[24]  Y. Koike,et al.  High-bandwidth, graded-index polymer optical fiber for near-infrared use. , 1996, Applied optics.

[25]  Volker Wittwer,et al.  Fluorescent planar concentrators , 1984 .

[26]  Björn Karlsson,et al.  Stainless steel solar mirrors — A material feasibility study☆ , 1989 .

[27]  R. W. Bentley,et al.  Increasing the cost-effectiveness of small solar photovoltaic pumping systems , 1995 .

[28]  M A Duguay,et al.  Lighting with sunlight using sun tracking concentrators. , 1977, Applied optics.

[29]  Keith W. J. Barnham,et al.  Quantum-dot concentrator and thermodynamic model for the global redshift , 2000 .

[30]  Virginia L. Morris Cleaning agents and techniques for concentrating solar collectors , 1980 .

[31]  M. Kischkoweit-Lopin An overview of daylighting systems , 2002 .

[32]  Renata Reisfeld,et al.  Luminescent solar concentrators for energy conversion , 1982 .

[33]  Richard M. Swanson,et al.  The promise of concentrators , 2000 .

[34]  C. Estrada,et al.  Heat transfer analysis in a calorimeter for concentrated solar radiation measurements , 2007 .

[35]  O. A. Jaramillo,et al.  Viability study of porous silicon photonic mirrors as secondary reflectors for solar concentration systems , 2009 .

[36]  Miroslav Kocifaj Efficient tubular light guide with two-component glazing with Lambertian diffuser and clear glass , 2009 .

[37]  J. S. Batchelder,et al.  Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. , 1979, Applied optics.

[38]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[39]  J Franklin,et al.  Optimisation of a three-colour luminescent solar concentrator daylighting system , 2004 .

[40]  Massimo Paroncini,et al.  Monitoring of a light-pipe system , 2007 .

[41]  M. El‐Mansy,et al.  Performance evaluation of thin-film solar concentrators for greenhouse applications , 2007 .

[42]  Abbas Elmualim,et al.  Measurement and modelling of light pipe for energy efficient lighting , 1998 .

[43]  Enedir Ghisi,et al.  Evaluating the potential for energy savings on lighting by integrating fibre optics in buildings , 2006 .

[44]  Danny H.W. Li,et al.  Predicting daylight illuminance on inclined surfaces using sky luminance data , 2004 .

[45]  E. C. Subbarao,et al.  Advances in Ceramics , 1981 .

[46]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .

[47]  S. Riffat,et al.  Daylight performance of lightpipes , 2000 .

[48]  Jean-Louis Scartezzini,et al.  Assessing Daylighting Performances of Electrochromic Glazings Coupled to an Anidolic Device , 2003 .

[49]  Antonio Luque,et al.  High efficiency and high concentration in photovoltaics , 1999 .

[50]  Veronica Garcia Hansen,et al.  NATURAL ILLUMINATION OF DEEP-PLAN OFFICE BUILDINGS: LIGHT PIPE STRATEGIES , 2003 .

[51]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[52]  Friedrich Wilhelm Grimme,et al.  German developments in guidance systems: an overview daylight , 2002 .

[53]  Saffa Riffat,et al.  Evaluation of dichroic material for enhancing light pipe/natural ventilation and daylighting in an integrated system , 1999 .

[54]  Toshiro Maruyama,et al.  Static solar concentrator with vertical flat plate photovoltaic cells and switchable white/transparent bottom plate , 2005 .

[55]  Arif Hepbasli,et al.  Exergetic assessment of transmission concentrated solar energy systems via optical fibres for building applications , 2008 .

[56]  Russell P. Leslie,et al.  Capturing the daylight dividend in buildings: why and how? , 2003 .

[57]  Harald Ries,et al.  An astigmatic corrected target-aligned heliostat for high concentration , 1995 .

[58]  D M Conley,et al.  Let the sun shine in. , 1987, Geriatric nursing.

[59]  Surapong Chirarattananon,et al.  Daylighting through light pipes in the tropics , 2000 .

[60]  Björn Karlsson,et al.  Optical properties, durability, and system aspects of a new aluminium-polymer-laminated steel reflector for solar concentrators , 2004 .

[61]  J. Zubía,et al.  Theoretical Analysis of the Torsion-Induced Optical Effect in a Plastic Optical Fiber , 1997 .

[62]  Gilles Fraisse,et al.  Influence of the coupling between daylight and artificial lighting on thermal loads in office buildings , 2004 .

[63]  Peter Boyce Reviews of Technical Reports on Daylight and Productivity , 2004 .

[64]  Ewa Wäckelgård,et al.  Preparation and characterisation of solar selective SnOx:F coated aluminium reflector surfaces , 2000 .

[65]  Ann R. Webb,et al.  Considerations for lighting in the built environment: Non-visual effects of light , 2006 .

[66]  Dj Carter Tubular guidance systems for daylight: UK case studies , 2008 .

[67]  Danny H.W. Li,et al.  Evaluation of lighting performance in office buildings with daylighting controls , 2001 .

[68]  A. W. Czanderna,et al.  Stability of interfaces in solar energy materials , 1981 .

[69]  J. Cariou,et al.  Transport of solar energy with optical fibres , 1982 .

[70]  J. D. Muhs Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems , 2001 .

[71]  Renata Reisfeld,et al.  Prospects of sol-gel technology towards luminescent materials , 2001 .

[72]  Y. Koike,et al.  Thermally stable high-bandwidth graded-index polymer optical fiber , 2000, Journal of Lightwave Technology.

[73]  G. N. Tiwari,et al.  A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India) , 2009 .

[74]  Volker Wittwer,et al.  Theory of fluorescent planar concentrators and experimental results , 1981 .

[75]  Leyla Dokuzer Öztürk,et al.  Effect of the facade alternatives on the daylight illuminance in offices , 2003 .