Conditionals in Theories of Truth
暂无分享,去创建一个
[1] J. R. Shaw. Truth, Paradox, and Ineffable Propositions , 2013 .
[2] Elliott Mendelson,et al. Introduction to Mathematical Logic , 1979 .
[3] Graham Priest,et al. Boolean negation and all that , 1990, J. Philos. Log..
[4] Peter W. Woodruff. Paradox, truth and logic part I: Paradox and truth , 1984, J. Philos. Log..
[5] Keith Simmons,et al. Universality and the Liar: An Essay on Truth and the Diagonal Argument , 1993 .
[6] Philip D. Welch,et al. ULTIMATE TRUTH VIS-À-VIS STABLE TRUTH , 2008, The Review of Symbolic Logic.
[7] Haim Gaifman,et al. Pointers to Truth , 1992 .
[8] Robert van Rooij,et al. Reaching Transparent Truth , 2013 .
[9] Andrew Bacon. A New Conditional for Naive Truth Theory , 2013, Notre Dame J. Formal Log..
[10] Willard Van Orman Quine. Philosophy of Logic: Second Edition , 1986 .
[11] John P. Burgess,et al. The truth is never simple , 1986, Journal of Symbolic Logic.
[12] José Martínez Fernández. Maximal Three-Valued Clones with the Gupta-Belnap Fixed-Point Property , 2007 .
[13] Gian Aldo Antonelli,et al. The Complexity of Revision, Revised , 2002, Notre Dame J. Formal Log..
[14] Kai-Uwe Kühnberger,et al. Comparing Inductive and Circular Definitions: Parameters, Complexity and Games , 2005, Stud Logica.
[15] Leon Horsten,et al. The Tarskian Turn: Deflationism and Axiomatic Truth , 2011 .
[16] G. Priest. In Contradiction: A Study of the Transconsistent , 1987 .
[17] C. Novaes. A Comparative Taxonomy of Medieval and Modern Approaches to Liar Sentences , 2008 .
[18] Benedikt Löwe,et al. Set-Theoretic Absoluteness and the Revision Theory of Truth , 2001, Stud Logica.
[19] N. Belnap,et al. The Revision Theory of Truth , 1993 .
[20] Aladdin M. Yaqub,et al. The Liar Speaks the Truth: A Defense of the Revision Theory of Truth , 1993 .
[21] A. R. Turquette,et al. Logic, Semantics, Metamathematics , 1957 .
[22] J. Beall. Spandrels of Truth , 2009 .
[23] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[24] Gian Aldo Antonelli,et al. The Complexity of Revision , 1994, Notre Dame J. Formal Log..
[25] I. Mackenzie. The Semantic Conception of Truth , 1997 .
[26] Andrea Cantini,et al. Paradoxes, Self-Reference and Truth in the 20th Century , 2009, Logic from Russell to Church.
[27] Anil Gupta. Truth, Meaning, Experience , 2011 .
[28] C. I. Lewis,et al. The Semantic Conception of Truth and the Foundations of Semantics , 1944 .
[29] Maricarmen Martinez,et al. Some Closure Properties of Finite Definitions , 2001, Stud Logica.
[30] Solomon Feferman,et al. Toward useful type-free theories. I , 1984, Journal of Symbolic Logic.
[31] Shawn Standefer,et al. SOLOVAY-TYPE THEOREMS FOR CIRCULAR DEFINITIONS , 2015, The Review of Symbolic Logic.
[32] G. Eisenhauer. Recent Essays On Truth And The Liar Paradox , 2016 .
[33] David Ripley. Revising Up: Strengthening Classical Logic in the Face of Paradox , 2013 .
[34] Francesco Orilia,et al. Property theory and the revision theory of definitions , 2000, Journal of Symbolic Logic.
[35] Anil Gupta,et al. A critique of deflationism , 1993 .
[36] Riccardo Bruni,et al. Analytic Calculi for Circular Concepts by Finite Revision , 2013, Stud Logica.
[37] Vann McGee. Field’s logic of truth , 2010 .
[38] C. Chihara. The Semantic Paradoxes: A Diagnostic Investigation , 1979 .
[39] Vann McGee,et al. Truth, Vagueness, and Paradox: An Essay on the Logic of Truth , 1991 .
[40] Volker Halbach. Axiomatic Theories of Truth: Foundations , 2011 .
[41] Greg Restall. What are we to accept, and what are we to reject, while saving truth from paradox? , 2010 .
[42] Aladdin M. Yaqub. Two types of deflationism , 2008, Synthese.
[43] Nuel Belnap,et al. Gupta's rule of revision theory of truth , 1982, J. Philos. Log..
[44] Philip Kremer,et al. The Gupta-Belnap systems S# and S* are not axiomatisable , 1993, Notre Dame J. Formal Log..
[45] Anil Gupta. Finite Circular Definitions , 2006 .
[46] Hannes Leitgeb,et al. What Theories of Truth Should be Like (but Cannot be) , 2007 .
[47] J. Barwise,et al. The Liar: An Essay on Truth and Circularity , 1987 .
[48] Nuel D. Belnap,et al. Quantifying in and Out of Quotes , 1973 .
[49] Hartry Field. Saving Truth From Paradox , 2008 .
[50] Hans G. Herzberger,et al. Notes on naive semantics , 1982, J. Philos. Log..
[51] Stefan Wintein,et al. Alternative Ways for Truth to Behave When There’s no Vicious Reference , 2014, J. Philos. Log..
[52] A. R. Turquette,et al. Logic, Semantics, Metamathematics , 1957 .
[53] Anil Gupta,et al. Truth and paradox , 1982, J. Philos. Log..
[54] Philip D. Welch,et al. On Gupta-Belnap Revision Theories of Truth, Kripkean fixed points, and the next stable set , 2001, Bull. Symb. Log..
[55] Harvey M. Friedman,et al. An axiomatic approach to self-referential truth , 1987, Ann. Pure Appl. Log..
[56] Anil Gupta. Definition and Revision: A Response to McGee and , 1997 .
[57] S. Yablo. New Grounds for Naive Truth Theory , 2004 .
[58] Albert Visser,et al. Four valued semantics and the Liar , 1984, J. Philos. Log..
[59] R. Montague,et al. The Semantic Conception of Truth and the Foundations of Semantics , 1996 .
[60] David Ripley,et al. Paradoxes and Failures of Cut , 2013 .
[61] Shawn Standefer. On Artifacts and Truth-Preservation , 2015 .
[62] Charles D. Parsons,et al. The liar paradox , 1974, J. Philos. Log..
[63] Anil Gupta,et al. XV—Remarks on Definitions and the Concept of Truth , 1989 .
[64] Graham Priest. Hopes Fade For Saving Truth , 2010, Philosophy.
[65] Albert Visser,et al. Semantics and the Liar Paradox , 2002 .
[66] C. M. Asmus. Vagueness and revision sequences , 2011, Synthese.
[67] Philip Kremer,et al. How Truth Behaves When There’s No Vicious Reference , 2010, J. Philos. Log..
[68] T. Burge. Semantical Paradox , 2017 .
[69] Michael Glanzberg,et al. A Contextual-Hierarchical Approach to Truth and the Liar Paradox , 2004, J. Philos. Log..
[70] André Chapuis,et al. Alternative revision theories of truth , 1996, J. Philos. Log..
[71] Elia Zardini,et al. TRUTH WITHOUT CONTRA(DI)CTION , 2011, The Review of Symbolic Logic.
[72] Wei Li,et al. On logic of paradox , 1995, Proceedings 25th International Symposium on Multiple-Valued Logic.