MHV Lagrangian for N = 4 super Yang-Mills

Here we formulate two field redefinitions for N = 4 Super Yang-Mills in light cone superspace that generates only MHV vertices in the new Lagrangian. After careful consideration of the S-matrix equivalence theorem, we see that only the canonical transformation gives the MHV Lagrangian that would correspond to the CSW expansion. Being in superspace, it is easier to analyse the equivalence theorem at loop level. We calculate the on shell amplitude for 4pt () MHV in the new lagrangian and show that it reproduces the previously known form. We also briefly discuss the relationship with the off-shell continuation prescription of CSW.

[1]  Michael Kiermaier,et al.  Proof of the MHV vertex expansion for all tree amplitudes in N=4 SYM theory , 2008, 0811.3624.

[2]  A. Brandhuber,et al.  One-loop MHV rules and pure Yang-Mills , 2007, 0704.0245.

[3]  Astronomy,et al.  S-Matrix equivalence theorem evasion and dimensional regularisation with the canonical MHV lagrangian , 2007, hep-th/0703286.

[4]  R. Boels,et al.  From twistor actions to MHV diagrams , 2007, hep-th/0702035.

[5]  A. Brandhuber,et al.  Amplitudes in pure Yang-Mills and MHV Diagrams , 2006, hep-th/0612007.

[6]  T. Morris,et al.  Structure of the MHV-rules lagrangian , 2006, hep-th/0605121.

[7]  P. Mansfield The Lagrangian origin of MHV rules. , 2005, hep-th/0511264.

[8]  A. Brandhuber,et al.  From trees to loops and back , 2005, hep-th/0510253.

[9]  A. Gorsky,et al.  From Yang-Mills lagrangian to MHV diagrams , 2005, hep-th/0510111.

[10]  Kasper Risager A direct proof of the CSW rules , 2005, hep-th/0508206.

[11]  Peter Svrček,et al.  Lectures on Twistor Strings and Perturbative Yang-Mills Theory , 2005, hep-th/0504194.

[12]  E. Witten,et al.  Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical review letters.

[13]  F. Cachazo,et al.  New recursion relations for tree amplitudes of gluons , 2004, hep-th/0412308.

[14]  M. Rozali,et al.  One-loop MHV amplitudes in supersymmetric gauge theories , 2004, hep-th/0410278.

[15]  A. Brandhuber,et al.  One-loop gauge theory amplitudes in N=4 super Yang-Mills from MHV vertices , 2004, hep-th/0407214.

[16]  C. Wen,et al.  One-loop maximal helicity violating amplitudes in N = 4 super Yang-Mills theories , 2004, hep-th/0410045.

[17]  V. Khoze,et al.  Non-MHV Tree Amplitudes in Gauge Theory , 2004, hep-th/0407027.

[18]  E. Witten,et al.  MHV vertices and tree amplitudes in gauge theory , 2004, hep-th/0403047.

[19]  E. Witten Perturbative Gauge Theory as a String Theory in Twistor Space , 2003, hep-th/0312171.

[20]  W. Siegel,et al.  Simplifying algebra in Feynman graphs. II. Spinor helicity from the spacecone , 1998, hep-ph/9801220.

[21]  Chalmers,et al.  Self-dual sector of QCD amplitudes. , 1996, Physical review. D, Particles and fields.

[22]  U. Amaldi,et al.  Supersymmetry , 1991, Science.

[23]  V. Nair A Current Algebra for Some Gauge Theory Amplitudes , 1988 .

[24]  L. Brink,et al.  The ultra-violet finiteness of the N=4 Yang-Mills theory☆ , 1983 .

[25]  S. Mandelstam Light-cone superspace and the ultraviolet finiteness of the N=4 model , 1983 .

[26]  L. Brink,et al.  N=4 Yang-Mills Theory on the Light Cone , 1983 .

[27]  P. West,et al.  Supersymmetric Yang-Mills Theories , 1980 .

[28]  F. Gliozzi,et al.  Supersymmetry, supergravity theories and the dual spinor model , 1977 .