Quantitative Heegaard Floer cohomology and the Calabi invariant

We define a new family of spectral invariants associated to certain Lagrangian links in compact and connected surfaces of any genus. We show that our invariants recover the Calabi invariant of Hamiltonians in their limit. As applications, we resolve several open questions from topological surface dynamics and continuous symplectic topology: we show that the group of Hamiltonian homeomorphisms of any compact surface with (possibly empty) boundary is not simple; we extend the Calabi homomorphism to the group of Hameomorphisms constructed by Oh-Müller; and, we construct an infinite dimensional family of quasimorphisms on the group of area and orientation preserving homeomorphisms of the twosphere. Our invariants are inspired by recent work of Polterovich and Shelukhin defining and applying spectral invariants for certain classes of links in the two-sphere.

[1]  Dusa McDuff,et al.  The geometry of symplectic energy , 1993 .

[2]  A cylindrical reformulation of Heegaard Floer homology , 2005, math/0502404.

[3]  Claude Viterbo,et al.  An introduction to symplectic topology , 1991 .

[4]  F. Zapolsky The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory , 2015, 1507.02253.

[5]  T. Perutz Hamiltonian handleslides for Heegaard Floer homology , 2008, 0801.0564.

[6]  Augustin Banyaga,et al.  Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique , 1978 .

[7]  Y. Oh Symplectic Topology and Floer Homology , 2015 .

[8]  P. Seidel Abstract analogues of flux as symplectic invariants , 2011, 1108.0394.

[9]  Y. Oh Symplectic topology as the geometry of action functional, II: Pants product and cohomological invariants , 1999 .

[10]  H. Hofer On the topological properties of symplectic maps , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  THE GROUP OF HAMILTONIAN HOMEOMORPHISMS AND C 0 -SYMPLECTIC TOPOLOGY , 2004, math/0402210.

[12]  Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds , 2004, math/0405064.

[13]  L. Polterovich,et al.  Function Theory on Symplectic Manifolds , 2014 .

[14]  M. Hutchings,et al.  Torsion contact forms in three dimensions have two or infinitely many Reeb orbits , 2017, Geometry & Topology.

[15]  L. Lazzarini Existence of a somewhere injective pseudo-holomorphic disc , 2000 .

[16]  O. Cornea,et al.  Quantum Structures for Lagrangian Submanifolds , 2007, 0708.4221.

[17]  Leonid Polterovich,et al.  Calabi quasimorphism and quantum homology , 2002 .

[18]  Vinicius G. B. Ramos,et al.  The asymptotics of ECH capacities , 2012, 1210.2167.

[19]  R. Leclercq,et al.  Spectral invariants for monotone Lagrangians , 2015, Journal of Topology and Analysis.

[20]  A. Kouvidakis Divisors on symmetric products of curves , 1993 .

[21]  P. Griffiths,et al.  Geometry of algebraic curves , 1985 .

[22]  Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds , 2003, math/0308225.

[23]  P. Py,et al.  On Continuity of Quasimorphisms for Symplectic Maps , 2012 .

[24]  E. Calabi On the Group of Automorphisms of a Symplectic Manifold , 2015 .

[25]  D. Eisenbud,et al.  Transverse foliations of Seifert bundles and self homeomorphism of the circle , 1981 .

[26]  P. Seidel A biased view of symplectic cohomology , 2007, 0704.2055.

[27]  P. Ozsváth,et al.  Holomorphic disks, link invariants and the multi-variable Alexander polynomial , 2008 .

[28]  É. Ghys Knots and dynamics , 2006 .

[29]  M. Bökstedt,et al.  On the curvature of vortex moduli spaces , 2010, 1010.1488.

[30]  D. Burago,et al.  Conjugation-invariant norms on groups of geometric origin , 2007, 0710.1412.

[31]  L. Polterovich The Geometry of the Group of Symplectic Diffeomorphism , 2001 .

[32]  T. Willmore Algebraic Geometry , 1973, Nature.

[33]  Y. Oh Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle , 1997 .

[34]  C^0-limits of Hamiltonian paths and the Oh-Schwarz spectral invariants , 2011, 1109.4123.

[35]  Leonid Polterovich,et al.  Lagrangian configurations and Hamiltonian maps , 2021 .

[36]  Zoltan Szabo,et al.  Holomorphic disks and topological invariants for closed three-manifolds , 2001 .

[37]  M. Schwarz On the action spectrum for closed symplectically aspherical manifolds Pacific J , 2000 .

[38]  P. Le Calvez Une version feuilletée équivariante du théorème de translation de Brouwer , 2005 .

[39]  Cheol-hyun Cho Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus , 2003, math/0308224.

[40]  T. Tsuboi Homeomorphism groups of commutator width one , 2012 .

[41]  Dusa McDuff,et al.  J-Holomorphic Curves and Symplectic Topology , 2004 .

[42]  P. Calvez Periodic orbits of Hamiltonian homeomorphisms of surfaces , 2006 .

[43]  A. Fathi,et al.  Structure of the group of homeomorphisms preserving a good measure on a compact manifold , 1980 .

[44]  S. Matsumoto Arnold conjecture for surface homeomorphisms , 2000 .

[45]  Michael Usher Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms , 2010, 1006.5390.

[46]  Y. Oh,et al.  Spectral Invariants with Bulk, Quasi-Morphisms and Lagrangian Floer Theory , 2011, Memoirs of the American Mathematical Society.

[47]  Vincent Humilière,et al.  Proof of the simplicity conjecture , 2020, Annals of Mathematics.

[48]  Dan Cristofaro-Gardiner,et al.  PFH spectral invariants on the two-sphere and the large scale geometry of Hofer’s metric , 2021, Journal of the European Mathematical Society.

[49]  Sobhan Seyfaddini,et al.  Barcodes and area-preserving homeomorphisms , 2018, Geometry & Topology.

[50]  Claude Viterbo,et al.  Symplectic topology as the geometry of generating functions , 1992 .

[51]  The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows , 2006, math/0601200.

[52]  D. Epstein,et al.  The simplicity of certain groups of homeomorphisms , 1970 .

[53]  On the quantum cohomology of a symmetric product of an algebraic curve , 1998, math/9803026.