Information Spectrum Approach to Second-Order Coding Rate in Channel Coding

In this paper, second-order coding rate of channel coding is discussed for general sequence of channels. The optimum second-order transmission rate with a constant error constraint epsiv is obtained by using the information spectrum method. We apply this result to the discrete memoryless case, the discrete memoryless case with a cost constraint, the additive Markovian case, and the Gaussian channel case with an energy constraint. We also clarify that the Gallager bound does not give the optimum evaluation in the second-order coding rate.

[1]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[2]  Masahito Hayashi,et al.  Second-Order Asymptotics in Fixed-Length Source Coding and Intrinsic Randomness , 2005, IEEE Transactions on Information Theory.

[3]  Masanori Ohya,et al.  On capacities of quantum channels , 2008 .

[4]  D. Saad,et al.  Statistical mechanics of low-density parity-check codes , 2004 .

[5]  Masahito Hayashi,et al.  Experimental Decoy State Quantum Key Distribution with Unconditional Security Incorporating Finite Statistics , 2007, 0705.3081.

[6]  P. A. Hiskett,et al.  Experimental decoy state quantum key distribution , 2007, 2007 Quantum Electronics and Laser Science Conference.

[7]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[8]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[9]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[10]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[11]  A. Dembo,et al.  Large Deviation Techniques and Applications. , 1994 .

[12]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[13]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[14]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2002 .

[15]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[16]  Masahito Hayashi,et al.  Practical evaluation of security for quantum key distribution , 2006 .

[17]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[18]  Shun Watanabe,et al.  Noise tolerance of the BB84 protocol with random privacy amplification , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..