Fisher and Kernel Fisher Discriminant Analysis: Tutorial

This is a detailed tutorial paper which explains the Fisher discriminant Analysis (FDA) and kernel FDA. We start with projection and reconstruction. Then, one- and multi-dimensional FDA subspaces are covered. Scatters in two- and then multi-classes are explained in FDA. Then, we discuss on the rank of the scatters and the dimensionality of the subspace. A real-life example is also provided for interpreting FDA. Then, possible singularity of the scatter is discussed to introduce robust FDA. PCA and FDA directions are also compared. We also prove that FDA and linear discriminant analysis are equivalent. Fisher forest is also introduced as an ensemble of fisher subspaces useful for handling data with different features and dimensionality. Afterwards, kernel FDA is explained for both one- and multi-dimensional subspaces with both two- and multi-classes. Finally, some simulations are performed on AT&T face dataset to illustrate FDA and compare it with PCA.

[1]  B. Frieden Science from Fisher Information , 2004 .

[2]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[3]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[4]  D. Massart,et al.  The Mahalanobis distance , 2000 .

[5]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[6]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[7]  Gavin Brown,et al.  Ensemble Learning , 2010, Encyclopedia of Machine Learning and Data Mining.

[8]  Gunnar Rätsch,et al.  Invariant Feature Extraction and Classification in Kernel Spaces , 1999, NIPS.

[9]  J. Alperin Local Representation Theory: Modular Representations as an Introduction to the Local Representation Theory of Finite Groups , 1993 .

[10]  R. Chellappa,et al.  Subspace Linear Discriminant Analysis for Face Recognition , 1999 .

[11]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[12]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[13]  Xiaoou Tang,et al.  Dual-space linear discriminant analysis for face recognition , 2004, CVPR 2004.

[14]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[15]  Amir Globerson,et al.  Metric Learning by Collapsing Classes , 2005, NIPS.

[16]  Hoda Mohammadzade,et al.  Automatic extraction of key-poses and key-joints for action recognition using 3D skeleton data , 2017, 2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP).

[17]  Generalized eigenvalue problems , 1967 .

[18]  Ralf Herbrich,et al.  Learning Kernel Classifiers: Theory and Algorithms , 2001 .

[19]  Benyamin Ghojogh,et al.  Linear and Quadratic Discriminant Analysis: Tutorial , 2019, ArXiv.

[20]  Benyamin Ghojogh,et al.  The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial , 2019, ArXiv.

[21]  Benyamin Ghojogh,et al.  Unsupervised and Supervised Principal Component Analysis: Tutorial , 2019, ArXiv.

[22]  Qiuqi Ruan,et al.  Kernel Fisher Discriminant Analysis for Palmprint Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[23]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[24]  Honggang Zhang,et al.  Robust Discriminant Analysis of Gabor Feature for Face Recognition , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[25]  Masashi Sugiyama,et al.  Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis , 2007, J. Mach. Learn. Res..

[26]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[27]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[28]  Fakhri Karray,et al.  Eigenvalue and Generalized Eigenvalue Problems: Tutorial , 2019, ArXiv.

[29]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[30]  Fakhri Karray,et al.  Feature Selection and Feature Extraction in Pattern Analysis: A Literature Review , 2019, ArXiv.

[31]  Hoda Mohammadzade,et al.  Fisherposes for Human Action Recognition Using Kinect Sensor Data , 2017, IEEE Sensors Journal.

[32]  Guangming Lu,et al.  Analysis On Fisher Discriminant Criterion And Linear Separability Of Feature Space , 2006, 2006 International Conference on Computational Intelligence and Security.

[33]  Zhu Ming-han,et al.  Fisher linear discriminant analysis algorithm based on vector muster , 2011 .

[34]  Zhelong Wang,et al.  A feature extraction method for human action recognition using body-worn inertial sensors , 2015, 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD).

[35]  Dana Kulic,et al.  Discriminative functional analysis of human movements , 2013, Pattern Recognit. Lett..

[36]  Hoda Mohammadzade,et al.  Recognizing Involuntary Actions from 3D Skeleton Data Using Body States , 2017, ArXiv.

[37]  Daniel Kressner,et al.  Generalized eigenvalue problems with specified eigenvalues , 2010, 1009.2222.

[38]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[39]  Narendra Ahuja,et al.  Face recognition using kernel eigenfaces , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[40]  Ali Ghodsi,et al.  Distance metric learning vs. Fisher discriminant analysis , 2008, AAAI 2008.

[41]  Hanqing Lu,et al.  Improving kernel Fisher discriminant analysis for face recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.