The fundamental solution of the space-time fractional advection-dispersion equation

A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order α ∈ (0, 1], and the second-order space derivative is replaced with a Riesz-Feller derivative of order β ∈ (0, 2]. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

[1]  D. Benson,et al.  Eulerian derivation of the fractional advection-dispersion equation. , 2001, Journal of contaminant hydrology.

[2]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[3]  Vo Anh,et al.  Scaling laws for fractional diffusion-wave equations with singular data , 2000 .

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  Yasuhiro Fujita,et al.  INTEGRODIFFERENTIAL EQUATION WHICH INTERPOLATES THE HEAT EQUATION AND THE WAVE EQUATION I(Martingales and Related Topics) , 1989 .

[6]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[7]  N. Leonenko,et al.  Spectral Analysis of Fractional Kinetic Equations with Random Data , 2001 .

[8]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[9]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[11]  A two-dimensional finite volume method for transient simulation of time- and scale-dependent transport in heterogeneous aquifer systems , 2003 .

[12]  D. Benson,et al.  Application of a fractional advection‐dispersion equation , 2000 .

[13]  J. C. Eilbeck Table errata: Higher transcendental functions. Vol. I, II (McGraw-Hill, New York, 1953) by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1971 .

[14]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[15]  A. El-Sayed,et al.  Continuation theorem of fractional order evolutionary integral equations , 2002 .

[16]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[17]  Fawang Liu,et al.  An unstructured mesh finite volume method for modelling saltwater intrusion into coastal aquifers , 2002 .

[18]  J. Trujillo,et al.  On the solution of fractional evolution equations , 2004 .

[19]  Francesco Mainardi,et al.  Approximation of Levy-Feller Diffusion by Random Walk , 1999 .

[20]  Vo Anh,et al.  Renormalization and homogenization of fractional diffusion equations with random data , 2002 .

[21]  M. Basu,et al.  On quadratic fractional generalized solid bi-criterion transportation problem , 2002 .

[22]  I. Turner,et al.  Time fractional advection-dispersion equation , 2003 .

[23]  Fawang Liu,et al.  The time fractional diffusion equation and the advection-dispersion equation , 2005, The ANZIAM Journal.

[24]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .