Spherical orbifold tutte embeddings

This work presents an algorithm for injectively parameterizing surfaces into spherical target domains called spherical orbifolds. Spherical orbifolds are cone surfaces that are generated from symmetry groups of the sphere. The surface is mapped the spherical orbifold via an extension of Tutte's embedding. This embedding is proven to be bijective under mild additional assumptions, which hold in all experiments performed. This work also completes the adaptation of Tutte's embedding to orbifolds of the three classic geometries - Euclidean, hyperbolic and spherical - where the first two were recently addressed. The spherical orbifold embeddings approximate conformal maps and require relatively low computational times. The constant positive curvature of the spherical orbifolds, along with the flexibility of their cone angles, enables producing embeddings with lower isometric distortion compared to their Euclidean counterparts, a fact that makes spherical orbifolds a natural candidate for surface parameterization.

[1]  Michael M. Kazhdan,et al.  Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.

[2]  Yaron Lipman,et al.  Orbifold Tutte embeddings , 2015, ACM Trans. Graph..

[3]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[4]  J. Conway,et al.  The Symmetries of Things , 2008 .

[5]  Alla Sheffer,et al.  Practical spherical embedding of manifold triangle meshes , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[6]  Mathieu Desbrun,et al.  Unconstrained spherical parameterization , 2005, SIGGRAPH '05.

[7]  Craig Gotsman,et al.  Discrete one-forms on meshes and applications to 3D mesh parameterization , 2006, Comput. Aided Geom. Des..

[8]  László Lovász,et al.  Discrete analytic functions: An exposition , 2004 .

[9]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[10]  Denis Zorin,et al.  Locally injective parametrization with arbitrary fixed boundaries , 2014, ACM Trans. Graph..

[11]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[12]  Yaron Lipman,et al.  Hyperbolic orbifold tutte embeddings , 2016, ACM Trans. Graph..

[13]  Zohar Levi,et al.  Bounded distortion parametrization in the space of metrics , 2016, ACM Trans. Graph..

[14]  Ayellet Tal,et al.  Polyhedron realization for shape transformation , 1998, The Visual Computer.

[15]  L. Lovász,et al.  On the null space of a Colin de Verdière matrix , 1999 .

[16]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[17]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[18]  Alla Sheffer,et al.  Mesh parameterization: theory and practice Video files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[19]  Denis Zorin,et al.  Global parametrization by incremental flattening , 2012, ACM Trans. Graph..

[20]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[21]  Peter Schröder,et al.  Conformal equivalence of triangle meshes , 2008, ACM Trans. Graph..

[22]  Nira Dyn,et al.  Robust Spherical Parameterization of Triangular Meshes , 2004, Computing.

[23]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[24]  Tiantian Liu,et al.  Towards Real-time Simulation of Hyperelastic Materials , 2016, ArXiv.

[25]  Marc Alexa,et al.  Merging polyhedral shapes with scattered features , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[26]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[27]  Hugues Hoppe,et al.  Consistent Spherical Parameterization , 2005, International Conference on Computational Science.

[28]  Keenan Crane,et al.  Robust fairing via conformal curvature flow , 2013, ACM Trans. Graph..

[29]  Zheng Liu,et al.  As-rigid-as-possible spherical parametrization , 2014, Graph. Model..

[30]  Denis Zorin,et al.  Controlled-distortion constrained global parametrization , 2013, ACM Trans. Graph..

[31]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[32]  Samuel R. Buss,et al.  Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.

[33]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[34]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[35]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[36]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[37]  Patrice Koehl,et al.  Globally Optimal Cortical Surface Matching with Exact Landmark Correspondence , 2013, IPMI.